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Wave Functions for Galilean Particles

Antonio Diaz Miranda1
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We give a description of Galilean particles in terms of geometric quantization,
a geometric correspondence from quantum states in the preceding sense to wave
functions in the ordinary quantum mechanical sense, and explicit computations
in some cases that lead to Schrödinger and Pauli equations.

1. INTRODUCTION

This paper should be placed in the general framework of the description
of nonrelativistic particles. The search for such a description is of some
interest from both the epistemological and the pedagogical point of view.
The study of this problem leads in particular to a clearcut distinction between
the specifically relativistic features of relativistic quantum mechanics and
those that equally follow from a nonrelativistic quantum theory. One of the
interesting conclusions is that nonrelativistic particles seem to possess intrin-
sic moments with the same values as their relativistic counterparts. In particu-
lar, the spin magnetic moment with its Landé factor g 5 2 is not a relativistic
property. This has been proved by Lévy-Leblond [12]. Other applications of
the theory are given in ref. 13.

The usual relativistic quantum mechanics leads to many wave equations,
each for a different kind of particle. In particular, one deals with Klein–
Gordon, Dirac, Maxwell, Weyl, gravitino, or Penrose wave equations. Each
of these equations was derived independently, but the recognition of their
spaces of solutions as spaces of representation of the Poincaré group leads
to a unification. In fact a group-theoretic study of wave equations was made
by Bargmann and Wigner [3] based on the previous classification of the
representations of Poincaré group made by Wigner [16].
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On the other hand, it is well known that geometric quantization has its
origins in a method to obtain group representations, the so-called orbit method,
first used by Kirillov [9] to obtain all unitary representations of nilpotent Lie
groups. That method was extended by Auslander and Kostant [1] to obtain
all unitary representations of Type I solvable Lie groups. These methods are
intimately related to geometric quantization (Kostant–Souriau theory [11,
14]). Then it is natural to ask for the possibility of using this point of view
to obtain the different wave equations. This has been accomplished in many
cases in ref. 14. [14]. These results were completed in the relativistic case
in ref. 8.

In the present paper, similar results are proved for the Bargmann group,
which is a central extension of the Galilei group.

As usual in geometric quantization, each coadjoint orbit corresponds to
a different kind of particle. Some of the orbits, the so-called quantizable
ones, are the base space of a natural principal circle bundle. The quantum
states of the corresponding particle are the sections of the associated Hermitian
line bundle, which satisfies a certain invariance condition. We prove that these
sections are in a one-to-one correspondence with the unrestricted sections of
another Hermitian line bundle.

The correspondence of the later sections with wave functions is made
in two steps. First, we establish a correspondence of the sections with those
of another line bundle and then we immerse this later bundle in a trivial one.
The sections under consideration are thus in a one-to-one correspondence
with vector-valued functions on the base space. These functions gives rise
by integration to the wave functions of the corresponding particle.

Some particular cases are considered and we see that in one case the wave
functions compose a wide family of solutions of the Schrödinger equation. In
another case, they compose a family of solutions of the Pauli equations.
These equations were first proposed as a nonrelativistic limit of the Dirac
equation, but here they appear as Galilei-invariant equations. This invariance
was first remarked by Levy-Leblond [12].

2. GALILEAN RELATIVITY GROUPS

The Galilei group is the differentiable manifold & 5 O(3) 3 R3 3 R3 3
R, with the group law given by

(A, b, c, e) , (A8, b8, c8, e8) 5 (AA8, Ab8 1 b, Ac8 1 be8 1 c, e 1 e8)

for all (A, b, c, e), (A8, b8, c8, e8) P &. Its connected component of the
identity is &0 5 SO(3) 3 R3 3 R3 3 R.

To each (A, b, c, e) P & there is associated the diffeomorphism of R4

defined by sending (x, y, z, t) to (x8, y8, z8, t8), where
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x8 5 Ax 1 bt 1 c (2.1)

t8 5 t 1 e (2.2)

with x 5 t(x, y, z) and x8 5 t(x8, y8, z8). Here tM means the transpose of the
matrix M. This association defines the usual action on the left of & on R4.

The Lie algebra of &, &, can be identified as usual with the tangent
space to the identity element, i.e., to o(3) 3 R3 3 R3 3 R.

On the other hand, o(3) can be identified to R3 by associating b 5 ( f, g,
h) to

b̂ 5 1
0 2h g
h 0 2f

2g f 0 2 (2.3)

Thus, the Lie bracket in o(3) becomes the usual cross-product in R3. As a
consequence, we can identify & with (R3)3 3 R.

We use the basis of & composed by the elements Z1
G, . . . , Z10

G , defined
by Z i

G 5 (ei , 0, 0, 0), Z 31i
G 5 (0, ei , 0, , 0), Z 61i

G 5 (0, 0, ei , 0), Z 10
G 5 (0, 0,

0, 1), i 5 1, 2, 3, where e1, e2, e3 are the elements of the canonical basis of
R3. The elements of the dual basis are denoted by (ZG)*i , i 5 1, . . . , 10.

The Bargmann group [2] is a central extension of & by R. It consists
of the manifold O(3) 3 R3 3 R3 3 R 3 R provided with the group law
given by

(A, b, c, e, a) , (A8, b8, c8, e8, a8)

5 1AA8, Ab8 1 b, Ac8 1 be8 1 c, e 1 e8, a 1 a8 1 tbAc8 1
b2

2
e82

for all (A, b, c, e, a), (A8, b8, c8, e8, a8) P O(3) 3 R3 3 R3 3 R 3 R. Its
connected component of the identity is SO(3) 3 R3 3 R3 3 R 3 R, which
will be denoted in what follows by @.

The map from the Bargmann group onto the Galilei group given by the
canonical projection onto the first four components is a homomorphism whose
kernel is in the center and is isomorphic to R under the map defined by
sending t P R to (I, 0, 0, 0, t). The tangent vector at t 5 0 to this one-
parameter subgroup is denoted by Z 11. The homomorphism has a section
defined by sending (A, b, c, e) to (A, b, c, e, 0). The tangent map to this
section at the identity provides us with an injective (not homomorphic) map
from Galilei Lie algebra & into the Bargmann Lie algebra @. The elements
corresponding to the Zi

G will be denoted by Zi.
Now, let us consider the closed subgroup of GL(5, R), G, composed by

the matrices
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1
A b c
0 1 e
0 0 12 (2.4)

with A P O(3), b, c P R3, e P R,
The map f from & onto G defined by sending (A, b, c, e) P & to (2.4)

is an isomorphism of Lie groups. In what follows we identify these Lie
groups by means of f.

We also consider the closed subgroup of GL(6, R), D, composed by
the matrices

1
A b c 0
0 1 e 0
0 0 1 0

tbA b2/2 a 1
2 (2.5)

with A P O(3), b, c, P R3, e P R,
The map d from the Bargmann group onto D defined by sending (A, b,

c, e, a) to (2.5) is an isomorphism of Lie groups. In what follows we also
identify these Lie groups by means of d.

These representations can be used to determine the coadjoint representa-
tions of G and D. For example, to evaluate the matrix of Ad(A,b,c,e,a)21 in the
basis composed by the Zi, one can proceed as follows.

The element of the Lie algebra of D whose components in the basis
(dd ? Z1, . . . , dd ? Z11) are (v1, v2, v3, b1, b2, b3, g1, g2, g3, ε, a) is

1
v̂ b g 0
0 0 ε 0
0 0 0 0
tb 0 a 0

2 (2.6)

where b 5 t(b1, b2, b3) and g 5 t(g1, g2, g3), and its image under
Ad(A,b,c,e,a)21 is

d((A, b, c, e, a)21) 1
v̂ b g 0
0 0 ε 0
0 0 0 0
tb 0 a 0

2 d((A, b, c, e, a))

By direct computation and regrouping of terms in vi, bi, gi, ε, a one
finds the sought-for matrix. Its transpose gives the matrix of Ad*(A,b,c,e,a) in
the basis dual of the (Zi: i 5 1, . . . , 11), (Z

*
i: i 5 1, . . . , 11), and is given by
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1
A b̂A ĉA 0 b 3 c
0 A eA 0 c 2 eb
0 0 A 0 2b
0 0 2tbA 1 b2/2
0 0 0 0 1

2 (2.7)

This gives us the coadjoint representation.
An explicit expression for the coadjoint representation of the Galilei

group follows from the preceding matrix: the matrix of Ad*(A,b,c,e) in the basis
((ZG)*i : i 5 1, . . . , 10) is

1
A b̂A ĉA 0
0 A eA 0
0 0 A 0
0 0 2tbA 1

2 (2.8)

The connected components of the identity of Galilei and Bargmann
groups are obtained by substitution of O(3) by SO(3). If one restricts consider-
ation to these Lie groups, the preceding formulas concerning the coadjoint
representation remain valid.

In this paper we consider the universal covering group of the connected
component of the identity of the Bargmann group, which we introduce as
follows.

Let us denote by q: SU(2) → SO(3) the natural covering map. This map
is defined as follows.

Let H0(2) be the real vector space composed of the 2 3 2 traceless
Hermitian matrices and let h: R3 → H0(2) be the isomorphism of real vector
spaces given by

h(x1, x2, x3) 5 1 x3 x1 2 ix2

x1 1 ix2 2x3 2
If |?| is the Euclidean norm in R3, we have

|(x1, x2, x3)|2 5 2Det h(x1, x2, x3) (2.9)

For each A P SU(2) we define a diffeomorphism of H0(2), FA , by means of
FA(H ) 5 AHA* for all H P H0(2), where A* is the transpose conjugate of A.

The map q is defined by sending A to the matrix of h21 + FA + h in the
canonical basis of R3. Since FA preserves the determinant, it follows from
(2.9) that the image of q is in O(3). As a consequence of the fact that SU(2)
is connected (it is diffeomorphic to the sphere S3), the image of q is in SO(3).

The map q is a homomorphism whose kernel is 6I. Thus, since the
dimensions of SU(2) and SO(3) coincide, q is a twofold covering map. The
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Lie group SU(2) being simply connected, it is the universal covering group
of SO(3).

Let s1, s2, s3 be the Pauli matrices, i.e.,

10 1
1 02, 10 2i

i 0 2, 11 0
0 212

respectively.
A basis of su(2) is {is1, is2, is3} and one sees by direct computation

that {dq?is1, dq?is2, dq?is3} is the basis of so(3), {22ê1, 22ê2, 22ê3} [cf.
equation (2.3)].

Now we define a map Q from the set @̃ 5 SU(2) 3 R3 3 R3 3 R 3
R onto @ 5 SO(3) 3 R3 3 R3 3 R 3 R by means of Q(A, b, c, e, a) 5
(q(A), b, c, e, a). When one considers on these sets its natural manifold
structure, Q becomes a covering map, so that @̃ is the universal covering
manifold of @.

In @̃ we consider the group structure given by

(A, b, c, e, a) ' (A8, b8, c8, e8, a8)

5 1AA8, q(A)b8 1 b, q(A)c8 1 be8 1 c, e 1 e8, a 1 a8

1 tbq(A)c8 1
b2

2
e82

Provided with this group structure, @̃ becomes a Lie group, and then
the universal covering group of @.

The Lie algebra isomorphism dQ21 sends the basis composed by the Z i

to a basis of the Lie algebra @̃ of @̃, whose elements, or its opposed, receive
the following designations:

li 5 dQ21 ? Z i

gi 5 2dQ21 ? Z i13

pi 5 dQ21 ? Z i16 (2.10)

E 5 2dQ21 ? Z 10

m 5 2dQ21 ? Z 11

for all i 5 1, 2, 3. The reason for these denominations is that these elements
of the Lie algebra will represent, in a suitable sense that will be specified in
Section 3, the dynamical variables angular momentum, linear momentum,
energy, and mass, respectively.
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The dual of the basis composed by the dQ21 ? Z i is given by {t(dQ) ?
Z
* 1, . . . , t(dQ) ? Z

* 11}. The matrix of Ad*(U,b,c,e,a) in this basis is

1
q(U ) b̂q(U ) ĉq(U ) 0 b 3 c

0 q(U ) eq(U ) 0 c 2 eb
0 0 q(U ) 0 2b
0 0 2tbq(U ) 1 b2/2
0 0 0 0 1

2 (2.11)

Then, its matrix in the basis dual of the (l1, l2, l3, g1, g2, g3, p1, p2, p3,
E, m) is

1
q(U ) 2b̂q(U ) ĉq(U ) 0 c 3 b

0 q(U ) 2eq(U ) 0 c 2 eb
0 0 q(U ) 0 b
0 0 tbq(U ) 1 b2/2
0 0 0 0 1

2 (2.12)

The group @̃ can also be described as a semidirect product. Let us recall
some terminology concerning semidirect products of Lie groups.

Let H and K be Lie groups and s be a homomorphism of K into the Lie
group of automorphisms of H. In K 3 H we consider the group law given by

(k, h) ∗ (k8, h8) 5 (kk8, hsk(h8))

where sk stands for the automorphism of H associated to k P K by s, and
the product manifold structure. Thus K 3 H becomes a Lie group that is
called the semidirect product of K and H and is denoted by K 3s H. If sk 5
IdH for all k P K, we write simply K 3 H instead of K 3s H, and this Lie
group is called the direct product of K and H.

Now we define @̃0 5 SU(2) 3s R3, where s is the map defined by
sending A P SU(2) to h21 + FA + h. Thus the group law in @̃0 can be written
as (A, b) ∗ (A8, b8) 5 (AA8, q(A)b8 1 b).

Let r be the homomorphism of @̃0 into the group of authomorphisms
of R5 defined by sending (A, b) P @̃0 to

r(A, b): (c, e, a) P R5 → 1q(A) c 1 be, e, tbq(A) c 1
b2

2
e 1 a2 P R5

where c consists of the first three coordinates of (c, e, a).
Obviously, @̃ is isomorphic to @̃0 3r R5, and these Lie groups will be

identified in the following.
In the remainder of this paper we write Ax to means q(A)x, for all A P

SU(2), x P R3.
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3. CLASSICAL STATE SPACE

This paper is based on the following physical hypothesis. The Galilean
particles are divided into classes, each class corresponding, according to
geometric quantization [14], to a coadjoint orbit of the relativity group of
the theory. In the present case the relativity group is the universal covering
group @̃ of the Bargmann group (cf. Section 2).

Each element of a coadjoint orbit is interpreted as being a movement of
the corresponding particle. The coadjoint orbit itself is called movement space.

In this paper we consider as a classical state space of a Galilean particle
any orbit of @̃ in R4 3 @̃* where the action is the product of the coadjoint
one onto the second factor and the action on R4 given by

L ∗ x 5 p(Q(L)) ? x (3.1)

for all L P @̃, x P R4, where Q is the covering map, p the projection onto
the Galilei group, and ? the usual action of the Galilei group onto R4.

The projection of such a state space onto the second factor is a coadjoint
orbit. The corresponding particle belongs to the class whose movement space
is this coadjoint orbit.

Each element of a state space is a pair composed of an element of R4

and a movement of the particle. We interpret this fact by saying that the
movement contains the event or “passes across” the event.

With this interpretation, if state space is the orbit of (r, a) P R4 3 @̃*,
the events “contained” in the movement Ad*L a are the {(Lg) ? r: g P @̃a},
where @̃a is the isotropy subgroup of @̃ at a. This set of events is the “general
appearance” of the movement in space-time. The movements passing across
the event r8 P R4 are the {Ad*L a: L ? r 5 r8}.

The general appearance of a movement in space-time depends, not only
on the choice of movement space (i.e., the class of the particle), but also on
the choice of state space. More precisely, if a P @̃*, L P @̃, the movement
Ad*L a has the same general appearance in space-time when one chooses as
classical state space the orbit of (r, a) as if one chooses the orbit of (r8, a)
if and only if there exist M P @̃a such that r8 5 M ? r, i.e., if the orbits are
the same. As an example, in the case of a massive spinless particle, one
choice of state space leads to the usual classical movements of a free material
point, but other choices lead to other general appearances, which are much
less easy to interpret. Similar considerations are to be made with regard to
the movements containing a given event.

The elements of the Lie algebra of @̃ define (linear) functions on @̃*
and, as a consequence, on each state space. They will be considered as
dynamical variables. In particular the functions defined by l [ (l1, l2, l3),
p [ ( p1, p2, p3), E, and m, (cf. Section 2) will be considered as an abstraction
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of angular momentum, linear momentum, energy, and mass, respectively.
These functions together with g [ (g1, g2, g3) and those given by the canonical
coordinates of R4 give us 15 canonical dynamical variables.

The remainder of this section is devoted to proving that this way of
looking at classical state space agrees with the usual one, up to diffeomorph-
ism, at least for the classical free massive spinless particle, and to justifying
the definition of the canonical dynamical variables we have done. In this
section we follow the ideas developed in the relativistic case [8]. Most of
them are inspired in by ref. 14.

Configuration space-time for a classical (spinless) free particle with
nonzero mass m is interpreted as being an abstract four-dimensional manifold
M. Each inertial observer, R is a global chart fR 5 (x1

R, x2
R, x3

R, tR). Of course
M is diffeomorphic to R4.

We consider a family of inertial observers such that changes of the
global charts are given by elements of the connected component of the identity
of the Galilei group, i.e., if R and R8 are members of the family, there exists
(A, b, c, e) in the connected component of the identity of Galilei group such
that fR8 + f21

R is given by

xR8 5 AxR 1 btR 1 c
(3.2)

tR8 5 tR 1 e

where xR 5 t(x1
R, x2

R, x3
R).

Charts fR give rise in the canonical way to charts of TM, ḟR 5
(ẋR , ṫR , xR , tR) 5 (ẋ1

R, ẋ2
R, ẋ3

R, ṫR , x1
R, x2

R, x3
R, tR), where the ẋi

R and ṫR are given
by ẋi

R(v) 5 v(xi
R), i 5 1, 2, 3, ṫR(v) 5 v(tR), for all v P TM. The map

ḟ21
R8 + ḟR is given by

ẋR8 5 AẋR 1 bṫR

ṫR8 5 ṫR

xR8 5 AxR 1 btR 1 c

tR8 5 tR 1 e

Hence, there exists a submanifold % of TM given by ṫR 5 1 for each
inertial observer R.

The restrictions to % of the ḟR are charts of %, provided that we forget
the (constant) ṫR. If we denote by the same letter, maps on TM as its restrictions
to %, this chart can be denoted by ḟR 5 (ẋR , xR , tR) 5 (ẋ1

R, ẋ2
R, ẋ3

R,
x1

R, x2
R, x3

R, tR). Thus each inertial observer R associates to an arbitrary point
of %, v, seven numbers ḟR(v) which are intepreted as giving velocity, position,
and time. Thus points of % will be called states and % itself, state space.
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The change of chart ḟ21
R8 + ḟR is given by

ẋR8 5 AẋR 1 b

xR8 5 AxR 1 btR 1 c (3.3)

tR8 5 tR 1 e

These transformations define an action of the Galilei group on R7. Let
us denote by (ẋ, x, t) the canonical coordinate system in R7. The differential
2-form V0 on R7 whose local expression is

V0 5 o
3

i51
mdẋi ∧ dxi 2 dT ∧ dt

with

T 5
1
2

m o
3

i51
(ẋi)2

and the vector field whose local expression is

X0 5 ẋi ­

­xi 1
­

­t

are left invariant by the Galilei action.
Thus, there exists a well-defined differential 2-form V and a vector field

X on % whose local expressions for each inertial observer R are

V 5 o
3

i51
m dẋi

R ∧ dxi
R 2 dTR ∧ dtR

with

TR 5
1
2

m o
3

i51
(ẋi

R)2

and

X 5 ẋ i
R

­

­x i
R

1
­

­tR

The motions of the particle under consideration are the trajectories of X in
%. We shall prove that % is canonically diffeomorphic to an orbit of @̃ in
R4 3 @̃*.

As noted, the Galilei action on R7 preserves V0. We shall see that this
action has a “momentum map” from R7 into the dual of the Galilei Lie
algebra [14].



Wave Functions for Galilean Particles 1255

If Z 5 (a, b, g, d) P (R3)3 3 R, we shall denote by Z the infinitesimal
generator of the action associated to Z, i.e., Z is the vector field whose flow
is given by the transformations associated to {Exp(2tZ )}.

A straightforward computation proves that

iZ V0 5 dF(Z )

where

F(Z ) 5 ^a, x 3 p& 1 ^b, tp 2 mx& 1 ^g, p& 2 d
^p, p&

2m
1 K(Z )

K is an arbitrary map from the Lie algebra into R, ^?& is the ordinary Euclidean
product, and p 5 ( p1, p2, p3) 5 mẋ.

If one choose a linear K, one can define a linear map (the momentum
map) m from R7 into the dual of the Lie algebra by means of

m(v) ? Z 5 [F(Z )](v)

for all v P R7, Z P &.
In terms of the basis {(ZG)*i : i 5 1, . . . , 10} (cf. Section 2) we have

m 5 o
3

i51
[(x 3 p)i(ZG)*i 1 (tp 2 mx)i(ZG)*i131 pi(ZG)*i16]

2
^p, p&

2m
(ZG)*10 1 K (3.4)

Let us choose K 5 0. By standard methods of Kostant–Souriau theory,
one can find an action of the Galilei group on the dual of its Lie algebra
such that m becomes equivariant. If one identifies the dual of the Lie algebra
with R10 by means of the basis composed of the (ZG)*i , the action is given by

(A, b, c, e) ? s 5 1
A b̂A ĉA 0
0 A eA 0
0 0 A 0
0 0 2tbA 1

2 s 1 m 1
c 3 b
eb 2 c

b
2b2/2

2 (3.5)

where tb is the transpose of b, and b2 5 tbb.
With this notation one can write

m 5 1
x 3 p

tp 2 mx
p

2p2/2m
2 (3.6)

The form of the action (3.5) leads us to consider the Bargmann group
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@ or its universal covering group, @̃ [cf. (2.7) and (2.11)]. Let us consider
the action of @̃ on R7 defined as in (3.1), for all L P @̃, x P R7, where now
? is the usual action of the Galilei group on R7.

If we denote by Y the infinitesimal generator of the action associated
to Y P @̃, we have

iY V0 5 id(p+Q)?Y V0

As a consequence of (3.4), one thus sees that

m̃ 5 o
3

i51
[(x 3 p)i t(dQ) ? Z

*
i 1 (tp 2 mx)i t(dQ) ? Z

*
i13 1 pi t(dQ) ? Z

*
i16]

2
^p, p&

2m
t(dQ) ? Z

*
10 1 M (3.7)

is a momentum map for the action (3.1), where M is any fixed element of @̃*.
If we take M 5 2m t(dQ)? Z

*
11, we obtain a momentum map which is

equivariant for the coadjoint action. In fact, we can identify the dual of the
Lie algebra of @̃ with R11 by means of the basis composed of the t(dQ) ?
Z
*

i, so that the map m̃ can be written as

1
x 3 p

tp 2 mx
p

2p2/2m
2m

2 (3.8)

and the equivariance of m̃ with respect to the coadjoint action follows from
the equivariance of m with respect to (3.5).

As a consequence, the image of R7 by m̃ is a coadjoint orbit of @̃. More
precisely, it is the orbit of (0, . . . , 0, 2m) by the coadjoint action. If a is
in the coadjoint orbit, its reciprocal image by m̃ is the image of an integral
curve of X0, so that m̃ establishes a one-to-one correspondence between points
of the coadjoint orbit and trajectories of X0.

Now, let us consider the injective map

g: (ṙ, r, s) P R7 → ((r,s), m̃(ṙ, r, s)) P R4 3 @̃*

The map g becomes equivariant when one considers in R4 3 @̃* the
action given by

L ∗ (s, a) 5 (p(Q(L)) ? s, Ad*L a)

where the action on R4 on the right-hand side is the usual one of the Galilei
group. In particular, g(R7) is an orbit of this action.
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For each inertial observer R we define gR 5 g + ḟR and mR 5 m̃ + ḟR ,
so that gR 5 (fR , mR).

The map gR enables us to identify % with the orbit g(R7) of @̃, but this
identification depends on R. In fact, if R and R8 are related by (3.2), then

gR8 + g21
R 5 (fR8 + f21

R , Ad*(A, b, c, e, a))

where a is arbitrary. Thus, these two ways of identifying state space with
the orbit are related by one of the transformations of the action.

The action of @̃ on % such that ḟR becomes equivariant obviously
preserves V , and mR is a momentum map for this action.

For all R, the image of mR is the coadjoint orbit obtained by projection
of g(R7) onto @*. Each mR maps in a one-to-one way trajectories of X to
elements of the coadjoint orbit. Thus the coadjoint orbit will be called the
space of movements.

Each element of the Lie algebra can be considered as a (linear) function
on the dual, and thus on R4 3 @*. With this interpretation we have

dQ21 ? Z i + gR 5 (xR 3 pR)i

dQ21 ? Z i13 + gR 5 (tR pR 2 mxR)i

dQ21 ? Z i16 + gR 5 pi
R (3.9)

dQ21 ? Z 10 + gR 5 2
^pR , pR&

2m

dQ21 ? Z 11 + gR 5 2m

where pR 5 mẋR.
Then

li + gR 5 (xR 3 pR)i

gi + gR 5 (mxR 2 tR pR)i

pi + gR 5 pi
R (3.10)

E + gR 5
^pR , pR&

2m

m + gR 5 m

which justify our interpretation of the dynamical variables l1, . . . , m.

4. QUANTUM STATES

In this section we define quantum states of a particle whose classical
state space is a given orbit of @̃ in R4 3 @̃* (cf. Section 3).
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The idea comes from geometric quantization, in the sense that quantum
states correspond to sections of a Hermitian line bundle on a coadjoint
orbit (movement space) that are invariant along a certain isotropic foliation.
According to the approach developed in the relativistic case [8], the foliation
will be fixed by the condition that physics must not depend on the choice
of state space corresponding to the given movement space.

For the most part we state the results in terms of the principal circle
bundle canonically associated to the Hermitian line bundle. Thus, the starting
point will be a Boothby–Wang fibration [4] on the given coadjoint orbit, i.e.,
a principal bundle with the circle S1 as structural group, provided with a
connection whose curvature form projects onto the canonical symplectic form
of the coadjoint orbit.

We also require the total space to be a homogeneous space of @̃ for an
action that is a lift of the coadjoint action (i.e., makes the bundle projection
equivariant) and preserves the connection. Under these circumstances the
total space is a homogeneous contact manifold.

For the sake of completeness, let us recall some known results concerning
the homogeneous contact manifolds under consideration. These results and
a study of more general situations can be found in ref. 15 and 5–7. Some
of these generalizations also have interest from the point of view of the
present paper. In fact, one can consider each covering of a coadjoint orbit
as a candidate for movement space, and the geometric construction that
follows would remain valid. For the purposes of this paper, it is enough to
consider the coadjoint orbits themselves. For fiber bundles, we use the notation
of ref. 10.

Let G be a Lie group. A fibration as desired on the coadjoint orbit of
a P G* exists if and only if there exists a surjective homomorphism, Ca

from the isotropy subgroup at a, Ga, onto the unit circle, S1, whose differential
is a. Then a and its coadjoint orbit are said to be quantizable. Here, we can
consider the differential of a homomorphism onto S1 as an ordinary 1-form
by identifying the Lie algebra of S1 to R. This identification is defined by
the condition that the exponential map becomes Exp(a) 5 e2pia for all a P
R. a and its coadjoint orbit are said to be R-quantizable if there exists a
surjective homomorphism from Ga onto R whose differential is a. The Lie
algebra of R is identified with R in such a way that the exponential map
becomes the identity. Of course, if a is R-quantizable, it is quantizable. In
ref. 7 a slightly more general concept of quantizability is used, but it is
unnecesary for the purposes of the present paper.

In what follows we assume that a is quantizable and Ca is an homomor-
phism from Ga onto the unit circle, whose differential is a. We identify the
coadjoint orbit with G/Ga in the canonical way.

We define an action of S1 on G/KerCa by means of
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(g Ker Ca) ∗ s 5 gh Ker Ca (4.1)

where h is any element of Ga such that Ca(h) 5 s. Actually (G/Ker Ca) (G/
Ga, S1) is a principal fiber bundle, the bundle action being the preceding
one, and the bundle projection, the canonical map from G/KerCa onto G/Ga.

The differential 1-form a projects to an invariant contact form v on
G/KerCa.

Let Z(v) be the vector field defined by iZ(v)v 5 1, iZ(v) dv 5 0. All the
integral curves of Z(v) have the same period. If we denote by T(v) the period
of any integral curve of Z(v), then v/T(v) is a connection form. Since the
structural group is Abelian, the curvature form is dv/T(v). There exist a
unique 2-form on G/Ga whose pullback under the bundle map is the curvature
form. This form is symplectic and its cohomology class is integral. It will
also be called a curvature form. Its reciprocal image under the canonical map
of G onto G/Ga is da/T(v). These symplectic manifolds and its covering
spaces are Hamiltonian spaces of the group G [11].

The horizontal lift of curves can be described as follows. Given a curve
g in G/Ga, the horizontal lift of g to g KerCa is

g̃(t) 5 (g(t) KerCa) ∗ exp122pi #
g.[o,t]

a2 (4.2)

where g is any lifting of g to G such that g(0) 5 g, and the vertical bar
means restriction.

Associated to this principal fiber bundle and the canonical action of S1

on C one can consider the 1-dimensional vector bundle whose total space is
(G/KerCa) 3S

1 C. This bundle is a complex line bundle, the addition in each
fiber is given by

[g KerCa, z] 1 [g8 KerCa, z8] 5 [g KerCa, z 1 Ca(g21 g8)z8]

and the multiplication by complex numbers by

a ? [g KerCa, z] 5 [g KerCa, az]

This vector bundle becomes Hermitian when one defines in each fiber
the Hermitian product

^[g KerCa, z], [g8 KerCa, z8]& 5 zCa(g21g8)z8

It is well known that the sections of the Hermitian line bundle are
in one-to-one correspondence with the functions on G/KerCa, f, such that
f ((g KerCa) ∗ s) 5 s21f (g KerCa) for all s P S1, g P G. These functions
will be called from now on pseudotensorial functions. This correspondence
is as follows. If f is a pseudotensorial function, the corresponding section
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sends m P G/Ga to [r, f (r)], where r is arbitrary in the fiber on m. If s is a
section of the Hermitian line bundle, the corresponding pseudotensorial func-
tion f is defined by s(p(r)) 5 [r, f (r)] for all r P G/KerCa, where p is the
bundle projection.

The sections of the Hermitian line bundle are called prequantum states.
Sometimes we use the same denomination for the corresponding pseudoten-
sorial functions.

Let us return to the case where G 5 @̃. As seen in Section 3, there are
many candidates for state space for the particle whose movement space is
the orbit of a. In fact, for each (q0, t0) P R4, the orbit of ((q0, t0), a) P R4

3 @* is one of them.
If state space is the orbit of ((q0, t0), a) and (q, t) P R4, the movements

containing the event (q, t) are the Ad*(A,b,c,e,a)a such that (A, b, c, e, a) ∗
(q0, t0) 5 (q, t), i.e., the Ad*(A,b,c,e,a)a such that A, b, and a are arbitrary, c 5
q 2 Aq0 2 bt0, and e 5 t 2 t0. This set depends on the choice of (q0, t0).

We call quantum states the prequantum states which are independent of
the preceding choice in the following sense.

Since

Ad*(A,b,q2A?q02bt0,t2t0,a)a 5 Ad*(I,0,2A?q02bt0,2t0,0) + Ad*(A,b,q,t,a)a

we say that a prequantum state, considered as a section, F of the Hermitian
line bundle, is independent of the choice of (q0, t0) if its value on the right-
hand side of the preceding equation is independent, up to parallel transport,
of the actual value of (q0, t0), i.e., if f (Ad*(I,0,c,e,0)g) 5 t(f(g)) for all g in
the orbit and (c, e) in R4, where t is the parallel transport along any curve
joining g with Ad*(I,0,c,e,0)g in the orbit of g by the subgroup R4 5 {(I, 0, q,
t, 0): q P R3, t P R}. An equivalent statement of this condition is that the
corresponding pseudotensorial function be constant along the horizontal lift
of such a curve; thus we have the following:

Definition 4.1. A quantum state is a prequantum state whose correspond-
ing pseudotensorial function is constant along the horizontal lift of any curve
whose image is in a orbit of the subgroup R4.

Let us denote by ai the components of a in the basis composed by the
t(dQ) ? Z

* i , and a789 5 (a7, a8, a9).

Lemma 4.2. There exists a unique action of R4 on G/KerCa whose orbits
are horizontal and such that p becomes equivariant. This action is given by

(I, 0, q, t, 0) ∗∗ ((A, b, c, e, a) KerCa)

5 ((A, b, q 1 c, t 1 e, a) KerCa)
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∗ exp{22pi[a789
tA (q 2 tb) 1 a10 t 1 a11

tb(tb/2 2 q)]} (4.3)

for all q P R3, t P R, where ∗∗ on the left-hand side stands for the new
action and ∗ on the right-hand side corresponds to the bundle action.

The proof of this result is very close to that of Lemma 4.1 of ref. 8 and
is left to the reader.

This action will be called the horizontal action.

Corollary 4.3. The quantum states are the prequantum states that corre-
spond to pseudotensorial functions left invariant by the horizontal action.

Let (A, b, c, e, a) P @̃, q P R3, t P R. Let us denote by (I, 0, q, t, 0)
∗∗ the diffeomorphism associated to (I, 0, q, t, 0) by the horizontal action,
and by (A, b, c, e, a)? the diffeomorphism associated to (A, b, c, e, a) by the
usual action. Then:

Lemma 4.4. We have

((A, b, c, e, a)?) + ((I, 0, q, t, 0) ∗∗)

5 ((I, 0, Aq 1 bt, t, 0) ∗∗) + ((A, b, c, e, a)?)

Proof. Since (I, 0, 0, 0, a) is in the center of @̃ for all a P R, its
corresponding diffeomorphism by the coadjoint representation is the identity.
In particular (I, 0, 0, 0, a) P @̃a for all a P B*.

We also have

(I, 0, 0, 0, a) 5 Exp@̃ (aZ11)

so that

Ca((I, 0, 0, 0, a)) 5 Ca + Exp@̃(aZ11) 5 ExpS
1 + dCa(aZ11)

5 ExpS
1 (aa11) 5 e2piaa11. (4.4)

For all (A8, b8, c8, e8, a8) P @̃, we thus have

(((A, b, c, e, a)?) + ((I, 0, q, t, 0)∗∗)((A8, b8, c8, e8, a8) KerCa)

5 ((A, b, c, e, a)(I, 0, q, t, 0)(A8, b8, c8, e8, a8) KerCa)

∗ exp{22pi[a789
tA8(q 2 tb8) 1 a10t 1 a11

tb8(b8t/2 2 q)]}

5 ((I, 0, Aq 1 bt, t, 0)(A, b, c, e, a)(I, 0, 0, 0, tbAq 1 b2t/2)

3 (A8, b8, c8, e8, a8) KerCa)

∗ exp{22pi[a789
tA8(q 2 tb8) 1 a10t 1 a11

tb8(b8t/2 2 q)]}
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5 ((I, 0, Aq 1 bt, t, 0)(A, b, c, e, a)(A8, b8, c8, e8, a8)

3 (I, 0, 0, 0, tbAq 1 b2t/2) KerCa)

∗ exp{22pi[a789
tA8(q 2 tb8) 1 a10t 1 a11

tb8(b8t/2 2 q)]} (4.5)

As a consequence of (4.4), the last of (4.5) coincides with

((I, 0, Aq 1 bt, t, 0)(A, b, c, e, a)(A8, b8, c8, e8, a8) KerCa)

∗ exp{22pi[a789
tA8(q 2 tb8) 1 a10t 1 a11

tb8(b8t/2 2 q)]

2 a11(tbAq 1 b2t/2)} (4.6)

and a straightforward computation proves that this expression coincides with

(((I, 0, Aq 1 bt, t, 0)∗∗) + ((A, b, c, et, a)?))((A8, b8, c8, e8, a8) KerCa) n

It follows that:

Corollary 4.5. The usual action transforms horizontal orbits into horizon-
tal orbits.

The usual action thus defines a transitive action in the set of horizontal
orbits. The isotropy subgroup at the horizontal orbit of KerCa is composed
of the (A, b, c, e, a) such that there exist q P R3, t P R, such that

(A, b, c, e, a) KerCa 5 (I, 0, q, t, 0) ∗∗ KerCa

5 (I, 0, q, t, 0) KerCa ∗ e22pi(a789q1a10t)

5 (I, 0, q, t, 0)g KerCa

where g is an element of @̃a such that

Ca(g) 5 e22pi(a789q1a10t)

As a consequence we have.

Lemma 4.6. The isotropy subgroup at the horizontal orbit of KerCa is
composed of the (I, 0, q, t, 0)g, q P R3, t P R, g P @̃a, such that

Ca(g) e2pi(a789q1a10t) 5 1

In what follows we characterize this subgroup as the kernel of a cer-
tain homomorphism.

Let (@̃a)0 be the image of @̃a under the homomorphism p1: (A, b, c,
e, a) P @̃ → (A, b) P @̃0.

Lemma 4.7. The map from (@̃a)0 into S1, (Ca)0, given by
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(Ca)0(A, b) 5 Ca(A, b, c, e, a) e22pi(a789c1a10e1a11a)

for all (A, b, c, e, a) P @a is a well-defined homomorphism.

Proof. The kernel of p1.@̃a is obviously contained in {(I, 0)} 3 R5.
From equation (2.11) it follows that the kernel is composed of the (I, 0, c,
e, a) P @̃ such that

ĉ 1
a7

a8

a9
2 5 1

0
0
02, 2e 1

a7

a8

a9
2 1 ca11 5 1

0
0
02

Since these are linear equations, the kernel is arcwise connected.
If (A, b, c, e, a), (A, b, c8, e8, a8) P @a, we have (A, b, c, e, a)(A, b,

c8, e8, a8)21 5 (I, 0, c 2 c8, e 2 e8, a 2 a8) P Ker(p1.@̃a). Then we define
g(t) 5 (I, 0, t(c 2 c8), t(e 2 e8), t(a 2 a8)), which is a curve in
Ker(p1.@̃a), and we have [7]

Ca((A, b, c, e, a)(A, b, c8, e8, a8)21)

5 exp12pi #
g

a2
5 exp{2pi[a789(c 2 c8) 1 a10(e 2 e8) 1 a11(a 2 a8)]}

Then we have

Ca(A, b, c, e, a) e22pi(a789c1a10e1a11a)

5 Ca(A, b, c8, e8, a8) e22pi(a789c81a10e81a11a8)

This proves that (Ca)0 is well defined. One can convince oneself of the fact
that (Ca)0 is a homomorphism by direct computation. n

We also define C̃a: (@̃a)0 3r R5 → S1 by means of

C̃a(A, b, c, e, a) 5 ((Ca)0(A, b)) e2pi(a789c1a10e1a11a)

A straightforward computation proves that C̃a is a homomorphism. It
is obviously an extension of Ca.

Lemma 4.8. The isotropy subgroup at the horizontal orbit of KerCa

is KerC̃a.

Proof. As a consequence of Lemma 4.6, any element of the isotropy
subgroup has the form (I, 0, q, t, 0)g, where q P R3, t P R, g P @̃a, so
that it is in (@̃a)0 3r R5, and moreover
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1 5 Ca(g) e2pi(a789q1a10t) 5 C̃a(g)C̃a(I, 0, q, t, 0) 5 C̃a((I, 0, q, t, 0)g)

It follows that the isotropy subgroup is in KerC̃a.
On the other hand, let (A, b, c, e, a) P @a, c0 P R3, e0, a0 P R, be

such that (A, b, c0, e0, a0) P KerC̃a. Then (A, b, c, e, a0) 5 (I, 0, 0, 0, a0 2
a)(A, b, c, e, a), so that (A, b, c, e, a0) is in @a, and we have

(A, b, c0, e0, a0) 5 (I, 0, c0 2 c, e0 2 e, 0)(A, b, c, e, a0)

and

Ca(A, b, c, e, a0) e2pi(a789(c02c)1a10(e02e))

5 C̃a(A, b, c, e, a0)C̃a(I, 0, c0 2 c, e0 2 e, 0)

5 C̃a(I, 0, c0 2 c, e0 2 e, 0)C̃a(A, b, c, e, a0)

5 C̃a((I, 0, c0 2 c, e0 2 e, 0)(A, b, c, e, a0)) 5 1

It follows that (A, b, c0, e0, a0) is in the isotropy subgroup. n

The space of orbits is thus canonically bijective to @̃/KerC̃a.
In the remainder of this section we assume that a is such that (@̃a)0 3r

R5 is closed in @̃ and has a finite number of connected components and that
C̃a is continuous. These facts actually hold for all quantizable a, but will
not be proved here. A proof can be obtained by direct verification, using a
classification of the coadjoint orbits of @̃ that Jaime Hoyos has found and
will be published elsewhere.

Thus, KerC̃a is a closed subgroup of @̃, so that @̃/KerC̃a has the canonical
structure of a differentiable manifold. We consider the space of orbits of the
horizontal action provided with the topology and differentiable structure
which makes the canonical bijection onto @̃/KerC̃a a diffeomorphism.

Since @a , (@̃a)0 3r R5 and KerCa , KerC̃a, we have canonical maps
such that the diagram in Fig. 1 is commutative.

The homomorphism C̃a gives us an isomorphism of (@̃a)0 3r R5/KerC̃a

onto S1. If we identify these groups by means of that homomorphism, we
obtain a principal fiber bundle @̃/KerC̃a (@̃/((@̃a)0 3r R5), S1). The horizontal
arrows in Fig. 1 give us a homomorphism of principal circle bundles.

Fig. 1. Fiber bundles for geometric quantum states.
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The upper horizontal arrow corresponds to the map that sends each
element of @̃/KerCa to its horizontal orbit. Since quantum states correspond
to pseudotensorial functions left invariant by the horizontal action, they will
be identified with unrestricted pseudotensorial functions on @̃/KerC̃a.

5. WAVE FUNCTIONS

Let H and K be closed subgroups of a Lie group G. Let us assume that
there exists an action of G on the left on H, (g, h) P G 3 H → g ∗ h P H,
such that (g ∗ h)21 gh P K for all g P G, h P H.

We define

n: (g, h) P G 3 H → (g ∗ h)21gh P K

For an arbitrary closed subgroup L of G a straightforward computation
proves that

F: (g, (h, kK ù L)) P G

3 1H 3
K

K ù L2 → (g ∗ h, n(g, h)kK ù L) P H 3
K

K ù L
(5.1)

is an action on the left.

Example 1. Let H and K be Lie groups and s a homomorphism from K
into the group of the automorphisms of H. In the semidirect product K 3s

H the subgroups {e} 3 H and K 3 {e} are canonically isomorphic to H and K,
respectively, where e represents the identity element of K and H, respectively.

We define an action of K 3s H on {e} 3 H by means of

(k, h) ∗ (e, h8) 5 (e, hsk(h8))

where sk stands for s(k), and we see that the conditions hold with n ((k, h),
(e, h8)) 5 (k, e).

A particular case is the Poincaré group. The geometrical construction
we made in this section in general has been made in the case of the Poincaré
group in ref. 8.

Example 2. The group @̃ is a semidirect product (cf. the end of Section
2), so that we can do the preceding construction, according to Example 1,
with H 5 R5 and K 5 @̃0.

Now we proceed otherwise. Let H 5 R4 and K 5 {(A, b, 0, 0, a): A P
SU (2), b P R3, a P R}. We define an action of @̃ on H by means of

(A, b, c, e, a) ∗ (I, 0, x, t, 0) 5 (I, 0, Ax 1 bt 1 c, e 1 t, 0)

where Ax stands for q(A)x, as said at the end of Section 2, and we see in
this case that
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n((A, b, c, e, a), (I, 0, x, t, 0)) 5 (A, b, 0, 0, a 1 tb(Ax 1 tb/2))

The corresponding action of @̃ on H 3 (K/(K ù L)) is given by

F((A, b, c, e, a), ((I, 0, x, t, 0), (A8, b8, 0, 0, a8)K ù L))

5 ((I, 0, Ax 1 bt 1 c, t 1 e, 0), (AA8, Ab8 1 b, 0, 0, a 1 a8

1 tb(Ax 1 tb/2))K ù L) (5.2)

Returning to the general case, if we denote by e the identity element of
G, we have:

Proposition 5.1. If K ù H 5 {e}, the actions of G on H and on H 3
(K/(K ù L)) are both transitive. The isotropy subgroup of G at e is K for the
action on H. The isotropy subgroup of G at (e, K ù L) is K ù L for the
action on H 3 (K/(K ù L)).

Proof. If h, h8 P H, we have n(h, h8) 5 (h ∗ h8)21hh8, so that n(h, h8)
P K ù H 5 {e}. Then h ∗ h8 5 hh8 and, as a particular consequence, the
action on H is transitive.

Let Isotr(e) be the isotropy subgroup of G at e for the action on H and
Isotr(e, K ù L) be the isotropy subgroup of G at (e, K ù L) for the action
on H 3 (K/(K ù L)).

If g P Isotr(e), we have n(g, e) 5 (g ∗ e)21ge 5 g, so that g P K. If
k P K, we have n(k, e) 5 (k ∗ e)21k, so that k ∗ e P K ù H 5 {e} and it
follows that k P Isotr(e). As a consequence Isotr(e) 5 K.

Now, let h P H, k P K. We have

F(hk, (e, K ù L)) 5 ((hk) ∗ e, n(hk, e)K ù L)

5 ((hk) ∗ e, ((hk) ∗ e)21hkK ù L)

5 (h ∗ e, (h ∗ e)21hkK ù L) 5 (h, k K ù L)

which implies that the action in H 3 (K/(K ù L)) is transitive.
On the other hand, g P Isotr(e, K ù L) if and only if g ∗ e 5 e and

n(g, e) P K ù L, i.e., if and only if g P K ù L. n

In the case K ù H 5 {e}, we thus obtain an equivariant diffeomorphism
w21

0 from G/(K ù L) onto H 3 K/(K ù L) given by

w21
0 (gK ù L) 5 g ∗ (e, K ù L)

5 (g ∗ e, n(g, e) K ù L)

5 (g ∗ e, (g ∗ e)21gK ù L)

whose inverse is obviously given by
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w0: (h, kK ù L) P H 3
K

K ù L
→ hkK ù L P

G
K ù L

(5.3)

The composition of that map with the canonical one leads us to the
surjective submersion given by

w: (h, kK ù L) P H 3
K

K ù L
→ hkL P

G
L

(5.4)

which also is equivariant.

Remark 5.2. For each h fixed in H, the restriction of w to the subset
{h} 3 (K/(K ù L)) is easily seen to be injective.

In the remainder of this section we only consider the four cases arising
from Example 2 when L is each one of the denominators in the homogeneous
spaces that appear in Fig.1. The maps given by (5.4) in the four cases under
consideration are denoted by (5)–(8). The maps appearing in the diagram of
Fig. 1 are denoted by (1)–(4) as indicated in Fig. 2.

Since the group law in K is

(A, b, 0, 0, a) ' (A8, b8, 0, 0, a8) 5 (AA8, Ab8 1 b, 0, 0, a 1 a8)

we see that K is isomorphic to the direct product of @̃0 by R. Thus, we
denote K by @̃0 3 R in what follows. In the same way, the subgroup of K

Fig. 2. Fiber bundles for quantum states. First diagram.
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composed of the (A, b, 0, 0, a) such that (A, b) P ((@̃a)0 is denoted by
(@̃a)0 3 R.

The spaces where the maps (5)–(8) are defined are homogeneous spaces
and there exist canonical projections between them whose product by the
identity map of R4 will be denoted by (9)–(12). All these geometrical objects
are related by the commutative diagram appearing in Fig. 2.

We obviously have ((@̃a)0 3r R5) ù (@̃0 3 R) 5 (@̃a)0 3 R. On the
other hand, the maps

(A, b)(@̃a)0 P
@̃0

(@̃a)0
→ (A, b, 0, 0, 0)(@̃a)0 3r R5 P

@̃
(@̃a)0 3r R5

and

(A, b)(@̃a)0 P
@̃0

(@̃a)0
→ (A, b, 0, 0, 0)(@̃a)0 3 R P

@̃0 3 R

(@̃a)0 3 R

are easily seen to be diffeomorphisms. When these spaces are identified by
means of these diffeomorphisms, the map (7) becomes the projection onto
the second factor.

Let us denote by C8a (resp. C̃8a) the restrictions of Ca (resp. C̃a) to
@̃a ù (@̃0 3 R) (resp. (@̃a)0 3 R). Then the commutative diagram in Fig.
2 becomes the commutative diagram in Fig. 3, where now (6) is the map
sending ((I, 0, x, t, 0), (A, b, 0, 0, a) KerC̃8a)) to (A, b, x, t, a) KerC̃a.

Fig. 3. Fiber bundles for quantum states.
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Let us comment on the physical significance of the botton row in the
diagram. The homogeneous space @̃/@̃a is identified in the canonical way
to the coadjoint orbit of a, i.e., to movement space. Let us assume that the
origin in the space of events 0 P R4 is one of the events contained in the
movement a, i.e., that state space is the orbit of (0, a) in R4 3 @̃*.

The isotropy subgroup at (0, a) is (@̃0 3 R) ù @̃a, so that state space
can be identified with @̃/(@̃0 3 R) ù @̃a. But w21

0 [cf. equation (5.3)] enables
us to identify this space with

R4 3
@̃0 3 R

@̃a ù (@̃03 R)

When this identification is made, the canonical map from states space onto
movement space becomes the map (8). Thus the map (7) must be considered as
being a canonical map from “equivalence classes” of states onto “equivalence
classes” of movements.

As a consequence of Remark 5.2, the restriction of (8) to

{(I, 0, x, t, 0)} 3
@̃0 3 R

@̃a ù (@̃0 3 R)

establishes a bijection from this set onto {(A, b, x, t, a)@̃a: A P SU(2), b P
R3, a P R}, which is the set of movements containing (x, t). When one
identifies, as above, state space with R4 3 ((@0 3 R)/(@0 3 R ù @a)), the
set {(I, 0, x, t, 0)} 3 ((@0 3 R)/(@0 3 R ù @̃a)) is thus identified with the
set of possible states in the event (x, t), each of these states corresponding
to a movement passing through (x, t). In particular, the same differentiable
manifold (@0 3 R)/(@0 3 R ù @̃a) parametrizes the set of movements
passing though an arbitrary event. Notice that when two different events are
given, (x, t), (x8, t8) P R4, an element of (@0 3 R)/(@0 3 R ù @̃a) represents
a movement passing through (x, t) and a movement passing through (x8, t8),
but these movements are in general different.

With the identifications we have done, (2) is the map that sends (A, b,
c, e, a) KerC̃a P @̃/KerC̃a to (A, b)(@̃a)0 P @̃0/(@̃a)0.

The map (12) is the product of the identity of R4 by the map defined
by sending (A, b, 0, 0, a) KerC̃8a P @̃/KerC̃8a to (A, b)(@̃a)0 P @̃0/(@̃a)0, and
is the bundle projection of a principal fiber bundle whose structural group
is ((@̃a)0 3 R)/KerC̃8a.

The homomorphism C̃8a establishes a canonical isomorphism C̃8a of ((@̃a)0

3 R)/KerC̃8a onto the subgroup S 5 C̃8a((@̃a)0 3 R) of S1.

Lemma 5.3. The subgroup S is closed in S1 and C̃8a is a Lie group
isomorphism.
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Proof. If the differential of C̃8a is not zero, the subgroup S contains a
neighborhood of the identity element of S1, so that it is all of S1. Then C̃8a
is easily seen to be a diffeomorphism.

If the differential vanishes, C̃8a is constant on each connected component
so that, as a consequence of the fact that the number of connected components
of (@̃a)0 3 R is finite, C̃8a((@̃a)0 3 R) is finite. The map C̃8a is in this case
an isomorphism of finite Lie groups. n

We identify the Lie group ((@̃a)0 3 R)/KerC̃8a with S by means of
C̃8a.

The principal fiber bundle

1R4 3
@̃0 3 R

KerC̃8a 21R4 3
@̃0

(@̃a)0
, S2

whose bundle projection is (12), will be denoted by P0. The principal
fiber bundle

1@̃0 3 R

KerC̃8a 21 @̃0

(@̃a)0
, S2

will be denoted by P and its bundle projection by p.
Now we are interested in a characterization of the pullback by (6) of

the quantum states.
As a consequence of Equation (2.11), we see that the map

(U, b) P @̃0 → 1
q(U ) 0 2b

2tbq(U ) 1 b2/2
0 0 1 2 P GL(5, R) (5.5)

is a representation and also that, if (U0, b0) P (@̃a)0, we must have

1
q(U0) 0 2b0

2tb0q(U ) 1 b2
0 /2

0 0 1 21
a7

a8

a9

a10

a11

2 5 1
a7

a8

a9

a10

a11

2 (5.6)

Then, the following map is well defined:

(U, b)(@̃a)0 P @̃0/(@̃a)0 → 1
q(U ) 0 2b

2tbq(U ) 1 b2/2
0 0 1 21

a7

a8

a9

a10

a11

2 P R5 (5.7)
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We denote by P the function defined on @̃0/(@̃a)0 with values in R4

given by the first four components of the map (5.7).
The function defined on the coadjoint orbit whose components are ( p1,

p2, p3, 2E ) (cf. Section 3) takes in Ad*(U,b,c,e,a)a the value P((U, b)(@̃)a)0).
Then, if we identify the coadjoint orbit with @̃/@a, we see that the function
t( p1, p2, p3, 2E ) is projectable in @̃/(@̃a)0 under (4) and its projection is P.

Theorem 5.4. The pullback by (6) maps in a one-to-one way the set of
quantum states onto the set composed of the functions on R4 3 (@̃0 3 R)/
KerC̃8a having the form

Wf ((I, 0, x, t, 0), (A, b, 0, 0, a) KerC̃8a)

5 f ((A, b, 0, 0, a) KerC̃8a) e22pi^(x,t), P((A,b)(@̃a)0)& (5.8)

where f is a pseudotensorial function of the principal fiber bundle P, and
^?, ?& stands for the Euclidean product of R4.

Proof. We denote by x0 the complex-valued function on R4 3
(@̃0/(@̃a)0) given by

x0((I, 0, x, t, 0), (A, b)(@̃a)0) 5 e2pi^(x,t), P((A,b)(@̃a)0)&

The map x [ x0 + (12) is such that

x((I, 0, x, t, 0), (A, b, 0, 0, a) KerC̃8a) 5 e2pi^(x,t),P((A,b)(@̃a)0)&

Let F be a quantum state (i.e., a pseudotensorial function on @̃/KerC̃a)
and w 5 F + (6). We have

(wx)((I, 0, x, t, 0), (A, b, 0, 0, a) KerC̃8a)

5 e2pi^(x,t),P((A,b)(@̃a)0)&F(A, b, x, t, a) KerC̃a)

5 e2pi^(x,t),P((A,b)(@̃a)0)&

3 F((A, b, 0, 0, a)(I, 0, tA(x 2 bt), t, (b2/2)t 2 tbx) KerC̃a)

5 e2pi^(x,t),P((A,b)(@̃a)0)&

3 [C̃a(I, 0, tA(x 2 bt), t, (b2/2)t 2 tbx)]21 F((A, b, 0, 0, a) KerC̃a)

5 e2pi{^(x,t),P((A,b)(@̃a)0)&2(a789
tA(x2bt)1a10t1a11((b2/2)t2tbx))}

3 F((A, b, 0, 0, a) KerC̃a)

5 F((A, b, 0, 0, a) KerC̃a)

Thus w has the form Wf where f is the pullback of F by the canonical
projection of (@̃0 3 R)/KerC̃8a onto @/KerC̃a.
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Now, let f be a pseudotensorial function of P. We prove in what follows
that Wf is projectable by (6) and the projection is pseudotensorial. To prove
all that, it suffices to see that the relation

(I, 0, x, t, 0)(A, b, 0, 0, a) KerC̃a

5 (I, 0, x8, t8, 0)(A8, b8, 0, 0, a8) KerC̃a ∗ s (5.9)

imply

Wf ((I, 0, x, t, 0)(A, b, 0, 0, a) KerC̃8a)

5 sWf ((I, 0, x8, t8, 0)(A8, b8, 0, 0, a8) KerC̃8a) (5.10)

for all s P S1, x, b P R3, a P R, A P SU(2).
If equation (5.9) holds, there exist (A0, b0, c0, e0, a0) P (@̃a)0 3r R5

such that C̃a(A0, b0, c0, e0, a0) 5 s and (A, b, x, t, a) 5 (A8, b8, x8, t8, a8)(A0,
b0, c0, e0, a0). Then (A, b) 5 (A8, b8)(A0, b0), x 5 A8c0 1 b8e0 1 x8, t 5 t8
1 e0, a 5 a8 1 a0 1 tb8A8c0 1 b82e0/2 and

Wf ((I, 0, x, t, 0)(A, b, 0, 0, a) KerC̃8a)

5 f ((A, b, 0, 0, a) KerC̃8a) e22pi^(x,t),P((A,b)(@̃a)0)&

5 f (((A8, b8)(A0, b0), 0, 0, 0) KerC̃8a) e22pia11a e22pi^(x,t),P((A,b)(@̃a)0)&

5 f ((A8, b8, 0, 0, 0) KerC̃8a)(Ca)0(A0, b0) e2pi(a11a1^(x,t),P((A,b)(@̃a)0)&)

5 f ((A8, b8, 0, 0, a8) KerC̃8a) (Ca)0(A0, b0) e2pi(a11(a2a8)1^(x,t),P((A,b)(@̃a)0)&)

but a straightforward computation proves that

^(x, t), P((A, b)(@̃a)0)& 5 a789c0 1 a10e0 1 a11a0

1 ^(x8, t8), P((A8, b8)(@̃a)0)& 1 a11(a8 2 a)

and (5.10) follows. n

The map defined by sending each quantum state F to the f such that
F + (6) 5 Wf is an isomorphism [ps] of the complex vector space of quantum
states onto the complex vector space PS of pseudotensorial functions of P.

The preceding theorem enables us to interpret quantum states as pseudo-
tensorial functions of P0, or sections of the associated Hermitian line bundle.
The interesting fact in this description is that these sections depend on two
separate variables, one of them describing an event and the other a class of
movements containing that event.

Our next step toward wave functions is to establish an isomorphism v
from the complex vector space composed of these sections of an, in general,
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nontrivial line bundle onto a complex vector space PW of functions on the
base space with values in a finite-dimensional complex vector space. The
elements of PW will be called prewave functions. This will enable us to
define an isomorphism [pw] of the complex vector space of quantum states
onto PW by sending each quantum state F to the image by v of the section
corresponding to F + (6).

The map v will be defined in the general case by immersion of our line
bundle in a trivial vector bundle, but this is unnecessary in the cases where
the line bundle is trivial. For example, if (Ca)0 is trivial, the map

o: (X, (A, b)(@̃a)0) P R4 3
@̃0

(@̃a)0
→ (X, (A, b, 0, 0, 0) KerC̃8a) P R4

3
@̃0 3 R

KerC̃8a

is a global section of (12) (if, moreover, a11 5 0, ( is also bijective). Hence,
both the principal and the line bundles are trivial. The sections of the line
bundle can be identified in a canonical way with vector-valued functions on
the base space. More precisely, the map defined by sending the section
corresponding to the pseudotensorial function F to the function F + ( is an
isomorphism from the complex vector space of sections onto the complex
vector space of complex-valued functions on R4 3 (@̃0/(@̃a)0).

Then, in the case where (Ca)0 is trivial, [pw] sends the quantum state
whose image by [ps] is f to the complex-valued function on R4 3 @̃0/(@̃a)0,
Cf , given by

Cf ((I, 0, x, t, 0), (A, b)(@̃a)0)

5 f 8((A, b)(@̃a)0) e22pi^(x,t),P((A,b)(@̃a)0)& (5.11)

where f 8 is given by

f 8((A, b)(@̃a)0) 5 f ((A, b, 0, 0, 0) KerC̃8a)

We thus see that in this case the prewave functions are functions of the form
(5.11) with f 8 arbitrary.

In the case where (Ca)0 is not trivial, a way is given in Remark 5.1 of
ref. 8 to immerse the line bundle in a trivial bundle. The idea is the following.

If r is a representation of a Lie group G in a finite-dimensional complex
vector space L, r induces in a canonical way an action in the projective space
(the differentiable manifold of the one-dimensional complex subspaces) P(L)
of L.

Let L* 5 L 2 {0}, C* 5 C 2 {0}. If z P L*, we denote by [z] P
P(L) the one-dimensional subspace containing z.
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Let z0 P L*, Gz0
be the isotropy subgroup at z0, and G[z0] be the isotropy

subgroup at [z0] We obviously have Gz0
P G[z0].

Now, let H be a closed subgroup of G such that Gz0
, H , G[z0]. For

all h P H there exists k(h) P C such that r(h)z0 5 k(h)z0. The map k: h P
H → k(h) P C* is a Lie group homomorphism whose kernel is Gz0

.
Then H/Gz0

is a Lie group and (G/Gz0
)(G/H, H/Gz0

) is a principal fiber
bundle. On the other hand, k gives us an action of the structural group
H/Gz0

on C by means of hGz0
∗ c 5 k(h)c for all h P H, c P C. The immersion

of the associated line bundle (G/Gz0
) 3(H/Gz0) C into the trivial bundle p1:

(G/H ) 3 L → G/H is defined by sending [gGz0
, c](H/Gz0) to (gH, cr(g) ? z0).

This map is an injective homomorphism of vector bundles which enables
us to define an injective homomorphism from the complex vector space of
sections of the former into the complex vector space of L-valued functions
on G/H as follows: if f is a pseudotensorial function on G/Gz0

, the above
map transforms the corresponding section of the associated line bundle into
a section of p1 whose composition with the canonical projection on L is the
L-valued function on G/H, ff , given by ff (gH ) 5 f (gGz0

) r(g) ? z0.
In order to apply this construction to our case, we assume that there

exists a representation r of @0 3 R in a finite-dimensional vector space L
and z0 P L such that:

1. r(g)z0 5 C̃8a(g)z0, ∀g P (@̃a)0 3 R.
2. The isotropy subgroup at z0, (@0 3 R)z0

, is contained in (@̃a)0 3 R.

Under these circumstances, we say that (r, L, z0) is a trivialization of
C̃8a, and we have (@0 3 R)z0

5 KerC̃8a , (@̃a)0 3 R , (@0 3 R)[z0]. Then,
if we denote (@̃a)0 3 R by H, the homomorphism k of the preceding discussion
coincides with C̃8a.

The map [pw] is defined in this case as sending the quantum state F to
the L-valued function Cf , where f 5 [ps](F ), given by

Cf ((I, 0, x, t, 0), (A, b)(@̃a)0)

5 Wf ((I, 0, x, t, 0), (A, b, 0, 0, a) KerC̃8a)r(A, b, 0, 0, a) ? z0

5 f ((A, b, 0, 0, a) KerC̃8a) e22pi^(x,t),P((A,b)(@̃a)0)& r(A, b, 0, 0, a) ? z0 (5.12)

for all (I, 0, x, t, 0) P R4, (A, b, 0, 0, a) P @0 3 R.
The prewave functions in this case are thus functions having the form

(5.12) with f pseudotensorial in P.
The complex vector space of quantum states is a space of representation

for @̃: to each g P @̃ there corresponds an isomorphism that sends each
quantum state F considered as a pseudotensorial function on @̃ /KerC̃a

to F + g21, where g21 means the diffeomorphism of @̃/KerC̃a canonically
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associated to g. This representation then translates by means of [ps] (resp.
[pw]) to a equivalent representation on PS (resp. PW ), which will be denoted
by rps (resp. rpw). We now proceed to describe these representations.

If g 5 (A8, b8, x8, t8, a8), F is a quantum state and Wf its pullback by
(6), the pullback of F + g21 is Wf + Fg21, where Fg21 is the diffeomorphism
of R4 3 ((@0 3 R)/KerC8a) associated to g21 by the action F given by equa-
tion (5.1) in the case where L 5 KerC̃a.

We have

Wf + Fg21((I, 0, x, t, 0), (A, b, 0, 0, a) KerC̃8a)

5 Wf (g21 ∗ (I, 0, x, t, 0), n(g21, (I, 0, x, t, 0))(A, b, 0, 0, a) KerC̃8a)

5 Wf (g21 ∗ (I, 0, x, t, 0), (A821, 2A821b8, 0, 0, 2a8 2 b82t8/2 1 ^b8, x8&

2 t(A821b8)(A821x 2 A821b8t/2))(A, b, 0, 0, a) KerC̃8a)

5 Wf (g21 ∗ (I, 0, x, t, 0), (A821, 2A821b8, 0, 0, 2a8 2 b82 t8/2 1 ^b8, x8&

1 b82t/2 2 tb8x)(A, b, 0, 0, a) KerC̃8a)

5 f (A821, A, A821(b 2 b8), 0, 0, a 2 a8 1 b82(t 2 t8)/2

1 ^b8, x8 2 x&) KerC̃8a) e22pi^g21∗(x,t),P((A8,b8)21(A,b)(@̃a)0)&

5 f (A821A, A821(b 2 b8), 0, 0, 0) KerC̃8a) e22pi(a2a81^b8,x82x1b8(t2t8)/2&)a11

3 e22pi^g21∗(x,t),P((A8,b8)21(A,b)(@̃a)0)&

5 f ((A8, b8, 0, 0, 0)21(A, b, 0, 0, 0) KerC̃8a

3 e22pi(a2a81(^x2x8,t2t8),P((A,b)(@̃a)0)&)

5 f ((A8, b8, 0, 0, a8)21(A, b, 0, 0, 0) KerC̃8a) e22pi^(x2x8,t2t8),P((A,b)(@̃a)0)&

Then we see that

rps(g)( f ) 5 e2pi^(x8,t8),P+p& f + (A8, b8, 0, 0, a8)21 (5.13)

On the other hand, for any prewave function Cf we must have

rpw(g)(Cf) 5 Crps(g)( f )

so that, of course, (5.13) also determines rpw. Now we shall give a formula
that determines rpw(g)(Cf) more directly in terms of Cf .

Let us first consider the case where (Ca)0 is not trivial and (r, L, z0) is
a trivialization of C̃8a. One of our preceding computations leads to
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(rpw(g)((Cf))(I, 0, x, t, 0), (A, b)(@̃a)0)

5 f (A821A, A821(b 2 b8), 0, 0, 0) KerC̃8a)

3 e22pi(^g21∗(x,t),P((A8,b8)21(A,b)(@̃a)0)&2a81^b8,x82x1b8(t2t8)/2&)a11)

3 r(A, b, 0, 0, 0) ? z0

On the other hand, if we denote by F8g the diffeomorphism of R4 3
(@̃0/(@̃a)0) corresponding to g by the action given by (5.1) in the case where
L 5 (@̃a)0 3r R5, we have

Cf + F8g21((I, 0, x, t, 0), (A, b)(@̃a)0)

. Cf + F8g21((I, 0, x, t, 0), (A, b, 0, 0, 0)(@̃a)0 3 R)

5 Cf (g21 ∗ (I, 0, x, t, 0),

(A821A, A821(b 2 b8), 0, 0, 2a8 1 b82(t 2 t8)/2

1 ^b8, x8 2 x&)(@̃a)0 3 R)

. Cf (g21 ∗ (I, 0, x, t, 0), (A8, b8)21(A, b)(@̃a)0)

5 f ((A821A, A821(b 2 b8), 0, 0, 0) KerC̃8a)

3 e22pi^g21∗(x,t),P((A8,b8)21(A,b)(@̃a)0&) r((A8, b8, 0, 0, 0)21(A, b, 0, 0, 0)) ? z0

5 r(A8, b8, 0, 0, 0)21 e2pia11(2a81b82(t2t8)/21^b8,x82x&)

3 ((rpw(g)(Cf))((I, 0, x, t, 0), (A, b)(@̃a)0))

Hence

(rpw(g)(Cf))((I, 0, x, t, 0), (A, b)(@̃a)0)

5 e2pia11(a81b82(t82t)/21^b8,x2x8&) r(A8, b8, 0, 0, 0)

3 (Cf + F8g21((I, 0, x, t, 0), (A, b)(@̃a)0))

In the case where (Ca)0 is trivial, if Cf is given by (5.11) and g 5 (A8,
b8, x8, t8, a8), we have

(rpw(g)(Cf))((I, 0, x, t, 0), (A, b)(@̃a)0)

5 e2pia11(a81^b8,x2x81b8(t2t8)/2&) Cf + F8g21((I, 0, x, t, 0), (A, b)(@̃a)0)

Up to this moment, we have made no topological restriction on the class
of quantum states to be considered. Many choices are possible that enable
us to define wave functions associated to the corresponding quantum states.
Our choice in the present paper is the following: we consider only quantum
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states corresponding to prewave functions Cf such that f is continuous with
compact support.

Then, the Hermitian line bundle nature of some of the geometrical
objects involved enables us to define in a canonical way a Hermitian product
of quantum states and, as a consequence, of prewave functions. In fact, let
F and F 8 be quantum states, sF and sF8 the associated sections of the
Hermitian line bundle, f 5 [ps](F ) and f 8 5 [ps](F 8) ( f and f 8 continuous
with compact support). Then the Hermitian structure associates to the pair
of quantum states the function

^sF , sF8&((A, b)(@̃a)0)

5 F((A, b, 0, 0, a) KerC̃a) F 8((A, b, 0, 0, a) KerC̃a)

5 f ((A, b, 0, 0, a) KerC̃8a) f 8((A, b, 0, 0, a) KerC̃8a)

for all (A, b, 0, 0, a) P @0 3 R, which leads us to define the Hermitian
product of prewave functions

^Cf , Cf 8& 5 #
@̃0/(@̃a)0

ff 8v

where v is an invariant volume element on @̃0/(@̃a)0 and ff 8 is the function
on @̃0/(@̃a)0 given by

ff 8((A, b)(@̃a)0) 5 f ((A, b, 0, 0, a) KerC̃8a) f 8((A, b, 0, 0, a) KerC̃8a)

for all (A, b, 0, 0, a) P @0 3 R.
It follows from equation (5.13) that the representation is unitary for this

Hermitian product.
This Hermitian product can be expressed in terms of the prewave func-

tions themselves as follows.
If (Ca)0 is trivial, we obviously have

^Cf , Cf 8& 5 #
@̃0/(@̃a)0

Cf Cf 8v (5.14)

where CfCf 8 is the function on @̃0/(@̃a)0 given by

CfCf 8((A, b)(@̃a)0) 5 Cf (H, (A, b)(@̃a)0) Cf8 (H, (A, b)(@̃a)0)

for all (A, b) P (@̃a)0, H P R4.
Now, let us assume that (Ca)0 is not trivial and (r, L, z0) is a trivialization

of C̃8a. Since the isotropy subgroup of @0 3 R at z0 is KerC̃8a, we have a
canonical inmersion of @0 3 R/KerC̃8a into L whose image is the orbit of
z0, which will be denoted by 3. We identify @0 3 R/KerC̃8a to 3 by means
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of this immersion, but the topology and differentiable structure we consider
is that of homogeneous space. The canonical projection of @0 3 R/KerC̃8a
onto @̃0/(@̃a)0 becomes a map r of 3 onto @̃0/(@̃a)0. The pseudotensorial
functions on @0 3 R/KerC̃8a become complex-valued functions on 3; in fact,
they correspond to the functions which are homogeneous of degree 21 under
multiplication by elements of C̃8a((@̃a)0 3 R) , S1. These functions will be
called a-homogeneous of degree 21. The a-homogeneous functions of degree
T are defined in a similar way.

Let F be a sesquilinear form on L which does not vanish on 3. We define

Cf F Cf 8: (A, b)(@̃a)0 P @̃0/(@̃a)0

°
F(Cf (H, (A, b)(@̃a)0), Cf 8(H, (A, b)(@̃a)0))

F(z, z)

where z is arbitrary in r21((A, b)(@̃a)0) and H is arbitrary in R4. Thus

^Cf , Cf 8& 5 #
@̃0/(@̃a)0

CfFCf 8v (5.15)

Finally, we now define the wave functions. To each prewave function
Cf we associate a function C̃f defined on R4 with values in the same space
as Cf by means of

C̃f (x, t) 5 #
@̃0/(@̃a)0

Cf ((I, 0, x, t, 0), ?)v

Since we only consider the case where f is continuous with compact
support, the F̃f we obtain is analytic.

The functions F̃f are called wave functions and their construction can
be interpreted as follows. If one thinks of the prewave function Cf as giving
an “amplitude of probability” Cf ((I, 0, x, t, 0), (A, b)(@̃a)0) for each event
(x, t) and each class of movements passing trough (x, t), (A, b)(@̃a)0, C̃f

associates to (x, t) the “sum” of the amplitudes of probability corresponding
to all the classes of movements passing trough (x, t).

If the correspondence f ° C̃f is injective, one obtains an action rw of
@̃ on wave functions by means of

rw(g)(C̃f) 5 C̃rps(g)( f ) (5.16)

Injectivity is not clear but, as a consequence of the invariance of v,
we have

C̃rps(g)( f ) 5 r(A8, b8, 0, 0, 0) e2pia11(a81^b8,x2x81b8(t82t)/2&) C̃f + g21 (5.17)

for all g 5 (A8, b8, x8, t8, a8) P @̃, where g21 on the right-hand side stands



Wave Functions for Galilean Particles 1279

for the diffeomorphism of R4 corresponding to g and x (resp. t) is the function
on R4 whose value at (c1, c2, c3, c4) is (c1, c2, c3) (resp. c4). Notice that (5.17)
is valid under the hypothesis that (Ca)0 is not trivial and (r, L, z0) is a
trivialization of C̃8a. If (Ca)0 is trivial, a formula similar to (5.17) is valid,
with the factor r(A8, b8, 0, 0, 0) deleted.

This entails in particular that C̃rps(g)( f ) only depends on C̃f and g, so that
(5.16) defines rw , which, as a consequence of (5.16), is an action.

The differential of rw , drw , is the map from the Lie algebra of @̃ into
the Lie algebra of endomorphisms of the space of wave functions defined by

(drw(X )(C̃f))(H ) 5
d
dsZ

0

(rw(Exp sX )(C̃f))(H )

for all X P @̃, H P R4.
If X 5 (dq21(ĥ), b, g, d, k), where h, b, g P R3, d, a P R, a

straightforward computation proves that

(drw(X )(C̃f)) 5 dr(dq21(ĥ), b, 0, 0, 0)

+ C̃f 1 2pia11(k 1 ^b, x&)C̃f 1 XR
4 ? C̃f (5.18)

where XR
4 is the vector field on R4 whose flow is composed of the diffeom-

orphisms associated by the action on R4 to {Exp(2sX ): s P R}. In the case
where (Ca)0 is trivial, the formula obtained from the preceding one by deleting
the term in r is valid.

Each X P @̃ is a function on the state space of the particle corresponding
to a, and, in that sense, is a classical dynamical variable. The quantum
operator associated to X is

X̂ 5
i

2p
drw(X )

In the case of the canonical dynamical variables, one obtains

l̃k 5
1

2pi 1dr1isk

2
, 0, 0, 0, 02 1 o

3

j,r51
ekjr x j ­

­xr2
g̃k 5

1
2pi 1dr(0, ek , 0, 0, 0) 1 2pia11x k 2 t

­

­x k2
p̃k 5

1
2pi

­

­xk

Ê 5
i

2p
­

­t
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m̂ 5 a11

where ekjr are the components of an antisymmetric tensor such that e123 5 1.
The following sections study the wave functions that correspond to

several kinds of particles.

6. SCHRÖDINGER EQUATION

Let us consider a particle whose movement space is the coadjoint orbit
of the form

a 5 t(dQ)(tZ
* 10 1 mZ

* 11), m Þ 0

The isotropy subgroup at a in this case is

@̃a 5 {(U, 0, 0, e, a): U P SU(2), e, a P R}

This group is connected and the elements of its fundamental group are
given in an obvious way by the elements of the fundamental group of SU(2).
The integrals of a on these curves are all zero so that the cohomology class
defined by a on @̃a is zero. It follows that a is R-quantizable [7] and the
homomorphism C8a of @̃a onto R whose differential is a can be computed
as follows.

For each (U, 0, 0, e, a) in @̃a one consider a curve g in @̃a beginning
at the identity element and ending at (U, 0, 0, e, a). Then

C8a(U, 0, 0, e, a) 5 #
g

a

One can take g as being the product (in the homotopy theory sense) of
a curve of the form g1(t) 5 (d(t), 0, 0, 0, 0), where d is a curve from I to
U in SU(2), by the curve g2(t) 5 (U, 0, 0, te, ta), and one obtains

C8a(U, 0, 0, e, a) 5 te 1 ma

The homomorphism Ca of @̃a onto S1 whose differential is a is thus
given by

Ca(U, 0, 0, e, a) 5 e2pi(te1ma)

Then (@̃a)0 5 {(U, 0): U P SU(2)} and (Ca)0 is trivial, so that we need
no trivialization to give the wave functions in this case.

We shall give a volume element on @0/(@̃a)0.
Let us consider the action of @̃0 on R3 given by
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(U, b) ∗ x 5 q(U )x 1 b

The isotrropy subgroup at 0 is (@̃a)0, so that @̃0/(@̃a)0 can be identified with
R3 by means of the diffeomorphism

(U, b)(@̃a)0 P @̃0/(@̃a)0 → b P R3

Since det(q(U )) 5 1 for all U P SU(2), the usual volume element on R3

is invariant.
With this identification the function P becomes

P(y) 5 1 2my
t 1 my2/22

As a consequence the wave functions are

C̃f (x, t) 5 #
R

3
e2pi(m^x,y&2t(t1my2/2)) d 3y

where f is a compactly supported function on R3.
A straightforward computation proves that these functions are solutions

of the equation

i
2p

­

­t
C̃f (x, t) 5 tC̃f (x, t) 2

1
(2p)2

1
2m

DC̃f (x, t) (6.1)

Notice that m can take positive or negative values. For positive m the
preceding equation is the Schrödinger equation with a constant potential t.

For a pair (t, m) with negative m, one obtains an equation whose solutions
are the complex conjugate of the solutions of the Schrödinger equation
corresponding to (2t, .m.).

The interior product of wave functions is given by (5.14).

7. PAULI EQUATIONS

Now we consider a particle whose movement space is the coadjoint
orbit of

a 5 t(dQ)(sZ
* 3 1 tZ

* 10 1 mZ
* 11)

where s Þ 0, m Þ 0.
In this case we have

@̃a 5 H11z 0
0 z2, 0, 0, e, a2: z P S1, e, a P RJ

The group @̃a is connected so that the orbit is quantizable if and only



1282 Diaz Miranda

if the cohomology class defined by a, [a], is in H 1(@̃a, Z) [7]. This condition
holds if and only if *g a is integral for all g in a system of generators of the
fundamental group of @̃a. But the fundamental group of @̃a is generated by
the curve given by

g(t) 5 1e2pit 0
0 e22pit2

for all t P [0, 1].
We have *g a 5 24ps, so that the orbit is quantizable if and only if

s 5 Z/4p for some integral Z. When this condition holds the integer Z is the
period of the Reeb vector field of the contact manifold and the homomorphism
Ca is given by

Ca(g) 5 e2pi*da

where d is a curve beginning at the identity element and ending at g.
Let z 5 e2pir, r, e, a P R. in order to evaluate

Ca11z 0
0 z2, 0, 0, e, a2

one can consider the curve

d(t) 5 11e2pitr 0
0 e22pitr2, 0, 0, te, ta2

and one obtains *d a 5 24prs 1 te 1 ma so that

Ca11z 0
0 z2, 0, 0, e, a2 5 z24pse2pi(te1ma)

Then

(@̃a)0 5 H11z 0
0 z2,02: z P S1J

(Ca)011z 0
0 z2,02 5 z24ps

(@a)0 3r R5 5 H11z 0
0 z2, 0, c, e, a2: zP S1, c P R3, e, a, P RJ

C̃a11z 0
0 z2, 0, c, e, a2 5 z24pse2pi(te1ma)
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(@̃a)0 3 R 5 H11z 0
0 z2, 0, 0, 0, a2: z P S1, a P RJ

C̃8a11z 0
0 z2, 0, 0, 0, a2 5 z24pse2pima

Now let us restrict ourselves to the case where 24ps 5 1.
In this case (r, z0, C4) is a trivialization of C̃8a, where z0 5 t(1, 0, 0, 0)

and r is the representation of (@̃a)0 3 R in C4 given by

r(U, b, 0, 0, a) 5 e2pima1 U 0
21–2 h(b)U U2 P GL(4, C)

This trivialization enables us to give the wave functions in terms of
homogeneous of degree 21 functions on the orbit of z0 under r, identified
with (@̃a)0 3 R/KerC̃8a. We will identify these spaces with a well-known
manifold, which enables us to describe the construction in a more geometri-
cal way.

We define an action of @0 3 R on S3 3 R3, where S3 is the usual unit
sphere in C2, by means of

(U, b, 0, 0, a) ∗ (z, r) 5 (e2pimaUz, q(U )r 1 b)

This is a transitive action and the isotropy subgroup at (t(1, 0), 0) is
KerC̃8a. As a consequence, the map

l: (U, b, 0, 0, a) KerC̃8a P
@0 3 R

KerC̃8a
→ (U, b, 0, 0, a)

∗ 111
02, 02 P S 3 3 R3

is a diffeomorphism. If one identifies these manifolds by means of l, one
sees by direct computation that the bundle action of S1 on @0 3 R/KerC̃8a
becomes the usual product by elements of S1 in the factor S 3.

Now we consider an action of @0 3 R in P1(C) 3 R3, where P1(C) is
the projective space corresponding to C2, i.e., the manifold of complex 1-
dimensional subspaces of C2, by means of

(U, b, 0, 0, a) ∗ ([z], r) 5 ([Uz], q(U )r 1 b)

This action is transitive (since the preceding one is) and the isotropy subgroup
at ([t(1, 0)], 0) is (@̃a)0 3 R. As a consequence, the map



1284 Diaz Miranda

l8: (U, b, 0, 0, a)(@̃a)0 3 R P
@0 3 R

(@̃a)0 3 R
→ (U, b, 0, 0, a)

∗ 1F11
02G, 02 P P1(C) 3 R3

is a diffeomorphism. If one identifies these manifolds by means of l8, the
principal fiber bundle

@0 3 R

KerC̃8a 1 @0 3 R

(@̃a)0 3 R
, S12

becomes (S3 3 R3)((P1(C) 3 R3, S1), where the bundle projection maps
each (z, r) to ([z], r), and the bundle action is given, as we have said above,
by the usual product of elements of S 3 by modulus one complex numbers.

The 2-form on C2 given by

n0 5
(z1dz2 2 z2dz1) ∧ (z1dz2 2 z2dz1)

(z*z)2

where z1, z2 are the canonical coordinates in C2 and z*z 5 .z1.2 1 .z2.2 is
projectable in P1(C). The local expression of the projection n in each of the
two canonical coordinate systems of P1(C) is

dz ∧ dz
(1 1 .z.2)2

The 5-form defined in P1(C) 3 R3 by n ∧ v, where v is the canonical
volume element of R3, is a volume element left invariant by the action of
@0 3 R.

With the identifications we have done, the function P that was originally
defined in @0 3 R/(@̃a)0 3 R, becomes a function on P1(C) 3 R3. In a
strict sense this function is P + (l8)21. But we have

(l8)211F1z1

z22G, r2

5 11
z1

!.z1.2 1 .z2.2

2z2

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2

z1

!.z1.2 1 .z2.2
2, r, 0, 0, 02 (@̃a)0 3 R

Then one sees that
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P1F1z1

z22G, r2 5 1 2mr
t 1 mr 2/22

If f is a function on S3 3 R3 homogeneous of degree 21 under multiplica-
tion by modulus one complex numbers in the first argument, the corresponding
prewave function is given by

Cf1(I, 0, x, t, 0), F1z1

z22G, r2

5 f11
z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2, r2

3 e22pi^(x, t),(2mr,t1mr2/2)&

3 r11
z1

!.z1.2 1 .z2.2

2z2

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2

z1

!.z1.2 1 .z2.2
2, r, 0, 0, 02 1

1
0
0
0
2

5 f11
z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2, r2 e22pi^(x,t),(2mr,t1mr2/2)&

3 1 I
21–2 h(r)2 1

z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2

If f is continuous with compact support, the corresponding wave function
C̃f is obtained by integration with respect to n ∧ v. It is a function with
values in C4. Each of its components satisfies equation (6.1).

Now let us denote

Cf 5 1wf

x f
2 (7.1)

and, accordingly
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C̃f 5 1w̃f

x̃ f
2

where wf , xf , w̃f , x̃ f take their values at C2.
Then we have

w̃f (x, t) 5 #
P1(C)3R

3
f11

z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2, r2

3 e22pi^(x,t),(2mr,t1mr2/2)&1
z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2 n ` v (7.3)

x̃ f (x, t) 5 2
1
2 #

P1(C)3R
3

f11
z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2, r2

3 e22pi^(x,t),(2mr,t1mr2/2)&h(r)1
z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2 n ` v (7.4)

and a straightforward computation proves that

Ew̃f 1 (s ? p) x̃ f 5 0 (7.5)

(s ? p)w̃f 1 2mx̃ f 5 0

where

E 5 2
1

(2p)2

1
2m

D

and

s ? p 5 o
3

j51
s j 1

2pi
­

­x j

In the case of a positive m, these are the equations that appear in the
Pauli theory of the nonrelativistic approach to the Dirac equation. Since the
components of w̃f and x̃f are components of C̃f , they are also solutions of
the Schrödinger equation (6.1).
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Now, let us determine the interior product in this case, according to
(5.15).

The form

F(Z, Z 8) 5 Z* gZ

where

g 5 1 I iI
2iI 02

is sesquilinear. It is preserved by the representation r and its value at z0 is
1. Hence its value at any point of 3 is 1.

Then the interior product is given by

^Cf , Cf 8& 5 #
P1(C)3R

3
CfgCf 8n ` v (7.6)

5 #
P1(C)3R

3
(w*f wf 8 1 i(w*f x f 8 2 x*f wf 8))n ` v

Now, let us consider the case where 4ps 5 1. A trivialization of C̃8a is
(r8, z0, C4), where r8 is the representation

r8(U, b, 0, 0, a) 5 e2pima1 U 0
1–2 h(b)U U2 P GL(4, C)

Also in this case we consider an action of @0 3 R on S3 3 R3:

(U, b, 0, 0, a) ∗ (z, r) 5 (e2pima U z, q(U )r 1 b)

and an action of @0 3 R on P1(C) 3 R3:

(U, b, 0, 0, a) ∗ ([z], r) 5 ([Uz], q(U )r 1 b)

The isotropy subgroup at (t(1, 0), 0) (resp. ([t(1, 0)], 0)) is KerC̃8a (resp.
(@̃a)0 3 R) and both actions are transitive. Then we have a canonical diffeo-
morphism from @0 3 R/KerC̃8a (resp. @0 3 R/(@̃a)0 3 R) onto S3 3 R3

(resp. P1(C) 3 R3) defined as l (resp. l8) above, but now * stands for the
new action.

By means of these diffeomorphisms, the principal fiber bundle

(@0 3 R/KerC̃8a)(@0 3 R/(@̃a)0 3 R, S1)

can be identified, also this time, with (S3 3 R3)(P1(C) 3 R3, S1) with the
same projection and bundle action as in the preceding case.

Now (l8)21 is given by
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(l8)211F1z1

z22G, r2

5 11
z1

!.z1.2 1 .z2.2

2z2

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2

z1

!. z1.2 1 .z2.2
2, r, 0, 0, 02(@̃a)0 3 R

and one obtains also in this case

P1F1z1

z22G, r2 5 1 2mr
t 1 mr 2/22

If f is a complex-valued function on S3 3 R3, homogeneous of degree
21 under multiplication in S3 by modulus one complex numbers, the corres-
ponding prewave function is given by

Cf1(I, 0, x, t, 0), F1z1

z22G, r2

5 f11
z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2, r2

3 e22pi^(x,t),(2mr,t1mr2/2)&

r811
z1

!.z1.2 1 .z2.2

2z2

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2

z1

!. z1.2 1 .z2.2
2, r, 0, 0, 021

1
0
0
0
2

5 f11
z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2, r2 e22pi^(x,t),(2mr,t1mr2/2)&

3 1 I
1–2 h(r)21

z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2

Then we define wf and x f by (7.1) and w̃f and x̃ f by (7.2) and we obtain
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w̃f (x, t) 5 #
P1(C)3R

3
f11

z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2, r2

3 e22pi^(x,t),(2mr,t1mr2/2)&1
z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2n ` v (7.7)

x̃ f (x, t) 5
1
2 #

P1(C)3R
3

f11
z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2, r2

3 e22pi^(x,t),(2mr,t1mr2/2)& h(r)1
z1

!.z1.2 1 .z2.2

z2

!.z1.2 1 .z2.2
2n ` v (7.8)

which are solutions of the system of equations

Ew̃f 1 (s ? p)x̃ f 5 0
(7.9)

(s ? p)w̃f 1 2mx̃ f 5 0

where (s ? p) is the complex conjugate operator of s ? p.
Also by a straightforward computation one sees that the components of

w̃f and x̃f are solutions of the Schrödinger equation (6.1).
Notice that the complex conjugate of a solution of (7.5) whose compo-

nents satisfy (6.1) is solution of (7.9), but its components do not satisfy (6.1).
With regard to the Hermitian product, one also can use here the sesqui-

linear form F and one obtains (7.6) also in this case.
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