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Wave Functions for Galilean Particles

Antonio Diaz Miranda?!
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We give a description of Galilean particles in terms of geometric quantization,
a geometric correspondence from quantum states in the preceding sense to wave
functions in the ordinary quantum mechanical sense, and explicit computations
in some cases that lead to Schrodinger and Pauli equations.

1. INTRODUCTION

This paper should be placed in the general framework of the description
of nonrelativistic particles. The search for such a description is of some
interest from both the epistemological and the pedagogical point of view.
The study of this problem leads in particular to a clearcut distinction between
the specifically relativistic features of relativistic quantum mechanics and
those that equally follow from a nonrelativistic quantum theory. One of the
interesting conclusions is that nonrel ativistic particles seem to possess intrin-
sic moments with the same values as their relativistic counterparts. In particu-
lar, the spin magnetic moment with its Landé factor g = 2 isnot arelativistic
property. This has been proved by Lévy-Leblond [12]. Other applications of
the theory are given in ref. 13.

The usual relativistic quantum mechanics leads to many wave equations,
each for a different kind of particle. In particular, one deals with Klein—
Gordon, Dirac, Maxwell, Weyl, gravitino, or Penrose wave equations. Each
of these eguations was derived independently, but the recognition of their
spaces of solutions as spaces of representation of the Poincaré group leads
to aunification. In fact a group-theoretic study of wave equations was made
by Bargmann and Wigner [3] based on the previous classification of the
representations of Poincaré group made by Wigner [16].
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On the other hand, it is well known that geometric quantization has its
originsin amethod to obtain group representations, the so-called orbit method,
first used by Kirillov [9] to obtain al unitary representations of nilpotent Lie
groups. That method was extended by Auslander and Kostant [1] to obtain
al unitary representations of Type | solvable Lie groups. These methods are
intimately related to geometric quantization (Kostant—Souriau theory [11,
14]). Then it is natural to ask for the possibility of using this point of view
to obtain the different wave equations. This has been accomplished in many
cases in ref. 14. [14]. These results were completed in the relativistic case
in ref. 8.

In the present paper, similar results are proved for the Bargmann group,
which is a central extension of the Galilei group.

As usual in geometric quantization, each coadjoint orbit corresponds to
a different kind of particle. Some of the orbits, the so-called quantizable
ones, are the base space of a natura principal circle bundle. The quantum
states of the corresponding particle arethe sections of the associated Hermitian
line bundle, which satisfies a certain invariance condition. We prove that these
sections are in a one-to-one correspondence with the unrestricted sections of
another Hermitian line bundle.

The correspondence of the later sections with wave functions is made
in two steps. First, we establish a correspondence of the sections with those
of another line bundle and then we immerse this later bundle in atrivial one.
The sections under consideration are thus in a one-to-one correspondence
with vector-valued functions on the base space. These functions gives rise
by integration to the wave functions of the corresponding particle.

Some particular cases are considered and we seethat in one casethewave
functions compose awide family of solutions of the Schrodinger equation. In
another case, they compose a family of solutions of the Pauli equations.
These equations were first proposed as a nonrelativistic limit of the Dirac
equation, but here they appear as Galilei-invariant equations. Thisinvariance
was first remarked by Levy-Leblond [12].

2. GALILEAN RELATIVITY GROUPS

The Galilei group is the differentiable manifold 6 = O(3) X R3 X R3 X
R, with the group law given by

(A b,c,e) x (A, b, c,e)=(AA,Ab + b, Ac’ + be' + ¢, e+ ¢€)
for al (A, b, c, €, (A", b/, ¢, €) € 4. Its connected component of the
identity is 9, = SO(3) X R X R® X R.

To each (A, b, ¢, €) € % there is associated the diffeomorphism of R*
defined by sending (x, y, z t) to (X', y', Z, t'), where
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X =AX+bt+c (2.1)
t=t+e (2.2)

withX = Y(x,y, 2 and X' = (X', y', Z'). Here 'M means the transpose of the
matrix M. This association defines the usual action on the left of G on R4,
The Lie agebra of 4, 9, can be identified as usua with the tangent
space to the identity element, i.e., to 0(3) X R3 X R3 X R.
On the other hand, o(3) can be identified to R by associating b = (f, g,

h) to
A 0 -h g
b= h 0 —f (2.3)
-g f 0

Thus, the Lie bracket in o(3) becomes the usual cross-product in R3. As a
consequence, we can identify ¢ with (R3)3 X R.

We use the basis of ¢4 composed by the elements 73, . . . , Z&, defined
by Z; = (e,0,0,0),Z&" = (0,e,0,,0),2&" =(0,0,¢,0),Z¥ = (0,0,
0,1),i =12, 3, where g, e, e; are the elements of the canonical basis of
R3. The elements of the dual basis are denoted by (Z5)*,i = 1, ..., 10.

The Bargmann group [2] is a central extension of % by R. It consists
of the manifold O(3) X R3 X R® X R X R provided with the group law
given by

(A,b,c,eax(A,b,c, e, a)
2
B (AA,’ Ab’ + b, Ac’ + be’ +c,e+ €,a+ a + bAc +b§e')

for al (A b, c e a), (A,b,c,e,a) e OB X R®X RX R X R. Its
connected component of the identity is SO(3) X R3 X R3 X R X R, which
will be denoted in what follows by .

The map from the Bargmann group onto the Galilei group given by the
canonical projection onto thefirst four componentsisahomomorphismwhose
kernel is in the center and is isomorphic to R under the map defined by
sendingt € R to (I, 0, O, 0, t). The tangent vector at t = O to this one-
parameter subgroup is denoted by Z*. The homomorphism has a section
defined by sending (A, b, c, €) to (A, b, ¢, e 0). The tangent map to this
section at the identity provides us with an injective (not homomorphic) map
from Galilei Lie algebra ¥ into the Bargmann Lie algebra %3. The elements
corresponding to the Zi; will be denoted by Z'.

Now, let us consider the closed subgroup of GL(5, R), I', composed by
the matrices
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) -

with A € O(3), b, c € R% e € R,

The map ¢ from ¢ onto I" defined by sending (A, b, ¢, €) € 6 to (2.4)
is an isomorphism of Lie groups. In what follows we identify these Lie
groups by means of ¢.

We also consider the closed subgroup of GL(6, R), A, composed by
the matrices

©Co>»
O RrRrT
R o o0

(2.5)

D~ D
— O OO

b
1
0
b?/2

goo:b

—

with A € O(3), b, ¢, € R% e € R,

The map & from the Bargmann group onto A defined by sending (A, b,
C, € a) to (2.5) is an isomorphism of Lie groups. In what follows we aso
identify these Lie groups by means of §.

These representations can be used to determine the coadjoint representa-
tions of I and A. For example, to evaluate the matrix of Adiap.cea~1 in the
basis composed by the Z', one can proceed as follows.

The element of the Lie algebra of A whose components in the basis

(d-Z, ..., dd - ZY) are (o}, ? 03 BY B2 B YL V2 Y3 & a) s
® B v O
0 0 £ O
0 0 00 (26)
B 0 a O

where B = '(B%, B? B3 and v = (v, ¥4 v, and its image under
'A\d(A,b,c,e,.alr1 is

® B v O
a(Abcea )| o o 5 ols(abcea)
B 0 o O

By direct computation and regrouping of terms in ', B/, ¥, €, o one
finds the sought-for matrix. Its transpose gives the matrix of Adfpceq iN
the basisdual of the (Z":i =1,...,11),(Z:i =1, ..., 11), and isgiven by
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A bA © 0 bXxc

0 A eA 0 c—eb

0 O A 0 —b (2.7)
0 0 -bA 1 b2

0 0 0 0 1

This gives us the coadjoint representation.
An explicit expression for the coadjoint representation of the Galilei
group follows from the preceding matrix: the matrix of Ad{p,ce inthe basis

(Zo)r:i=1,...,10)is

A bA A O
0 A e 0
00 A 0 (28)
0 0 —bA 1

The connected components of the identity of Galilel and Bargmann
groups are obtained by substitution of O(3) by SO(3). If onerestricts consider-
ation to these Lie groups, the preceding formulas concerning the coadjoint
representation remain valid.

In this paper we consider the universal covering group of the connected
component of the identity of the Bargmann group, which we introduce as
follows.

Let us denote by g: SU(2) - SO(3) the natural covering map. This map
is defined as follows.

Let Hy(2) be the real vector space composed of the 2 X 2 traceless
Hermitian matrices and let h: R® - Hg(2) be the isomorphism of real vector
spaces given by

3 1 _ iy2
hod, 2, 50) :< X X |x>

xt+ixe =3
If ||-|| is the Euclidean norm in R3, we have
04, %2, 3|2 = —Det h(x, X2, 3) (2.9)

For each A € SU(2) we define a diffeomorphism of Hy(2), ®,, by means of
Or(H) = AHA* for dl H € Hy(2), where A* is the transpose conjugate of A.

The map g is defined by sending A to the matrix of h™1 o @, o hin the
canonical basis of R3. Since ®, preserves the determinant, it follows from
(2.9) that the image of qisin O(3). As a consequence of the fact that SU(2)
is connected (it is diffeomorphic to the sphere S3), the image of qisin SO(3).

The map g is a homomorphism whose kernel is *=I. Thus, since the
dimensions of SU(2) and SO(3) coincide, q is atwofold covering map. The
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Lie group SU(2) being simply connected, it is the universal covering group
of S0(3).
Let o4, 05, 03 be the Pauli matrices, i.e.,

R HED

A basis of su(2) is{io4, io,, iog} and one sees by direct computation
that {dg-io4, dg-io,, dg-ios} isthe basis of so(3), { —2&,, —28&,, —2&;} [cf.
equation (2.3)]. .

Now we define a map Q fromthe set B = U(2) X R® X R® X R X
R onto B = SO(3) X R3 X R® X R X R by means of Q(A, b, ¢, g a) =
(a(A), b, c, e, a). When one considers on these sets its natural manifold
structure, Q becomes a covering map, so that % is the universal covering
manifold of .

In 9% we consider the group structure given by

(A b,c,ea L (A,b,c, €, a)

= (AA’, g(A)b’ + b, q(A)C’ + be’ +c,e+€,a+ a

b2
+ hg(A)c’ + B e’)
Provided with this group structure, 9 becomes a Lie group, and then
the universal covering group of .
The Lie algebraisomorphism dQ~* sends the basis composed by the Z'
to abasis of the Lie algebra 3 of %, whose elements, or its opposed, receive
the following designations:

[ - dQ—l . Zi
gi — _dQ—l . Zi+3
p=dQ1l-zi+e (2.10)

E = _del . 710
m= _dQ—l .z

forali = 1, 2, 3. The reason for these denominations is that these elements

of the Lie algebra will represent, in a suitable sense that will be specified in

Section 3, the dynamical variables angular momentum, linear momentum,
energy, and mass, respectively.
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. Thedual of the basis composed by the dQ~* - Z' is given by {{(dQ) -
Zb ..., Y(dQ) - Z'}. The matrix of Ad{) pceq in this basisis

qU) bgU) &gU) O bXxc
0 qu) eU) 0 c—eb

0 0 qu) 0 b (2.11)
0 0 —hgU) 1 b2
0 0 0 0o 1

Then, its matrix in the basis dual of the (1%, 12, I3, ¢*, @?, &® p', P2 P°,
E, m) is

qU) -bgU) &gU) O cxb
0 q(u) —eqU) 0 c—eb
0 0 qu) o0 b (2.12)
0 0 thq(U) 1  b%2
0 0 0 0 1

The group 9 can also be described as a semidirect product. Let us recall
some terminology concerning semidirect products of Lie groups.

Let H and K be Lie groups and s be a homomorphism of K into the Lie
group of automorphisms of H. In K X H we consider the group law given by

(k, h) O(k’, h") = (kk', hs¢(h"))

where s, stands for the automorphism of H associated to k € K by s, and
the product manifold structure. Thus K X H becomes a Lie group that is
called the semidirect product of K and H and is denoted by K X H. If 5, =
Idy for all k e K, we write simply K X H instead of K X H, and this Lie
group is called the direct product of K and H.

Now we define By = SU(2) Xs R3 where s is the map defined by
sending A € U(2) to h 1o d, o h. Thus the group law in %, can be written
as (A, b) O(A', b)) = (AA', (AL’ + D).

Let r be the homomorphism of %, into the group of authomorphisms
of R® defined by sending (A, b) € %, to

2
r(A,b): (c,ea e R - (q(A) c + be e hg(A) c + % e+ a) e R®

where ¢ consists of the first three coordinates of (c, e, a).

Obviously, % is isomorphic to %, X, R®, and these Lie groups will be
identified in the following.

In the remainder of this paper we write Ax to means q(A)x, for al A e
V(2), x € R3.
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3. CLASSICAL STATE SPACE

This paper is based on the following physical hypothesis. The Galilean
particles are divided into classes, each class corresponding, according to
geometric quantization [14], to a coadjoint orbit of the relativity group of
the theory. In the present case the relativity group is the universal covering
group & of the Bargmann group (cf. Section 2).

Each element of a coadjoint orbit is interpreted as being a movement of
the corresponding particle. The coadjoint orbit itself is called movement space.

In this paper we consider as a classical state space of a Galilean particle
any orbit of % in R* X %* where the action is the product of the coadjoint
one onto the second factor and the action on R* given by

L Ox = m(Q(L)) - x (3.1)

foral L e 3B, x e R4 where Q is the covering map, = the projection onto
the Galilel group, and - the usual action of the Galilei group onto R*.

The projection of such a state space onto the second factor is a coadjoint
orhit. The corresponding particle belongs to the class whose movement space
is this coadjoint orbit.

Each element of a state space is a pair composed of an element of R*
and a movement of the particle We interpret this fact by saying that the
movement contains the event or “passes across’ the event.

With this interpretation, if state space is the orbit of (r, «) € R* X 973*
the events “contained” in the movement Ad} o« arethe {(Lg) - r: g %a}
where 33, istheisotropy subgroup of 9 at o.. This set of eventsisthe “general
appearance” of the movement in space-time. The movements passing across
theevent r’ € R* arethe {Ad¥a: L -1 =r'}.

The general appearance of a movement in space-time depends, not only
on the choice of movement space (i.e., the class of the particle), but also on
the choice of state space. More precisely, if « € %*, L e %, the movement
Adta has the same general appearance in space-time when one chooses as
classical state space the orbit of (r, o) asif one chooses the orbit of (r', )
if and only if thereexist M € %B, suchthatr’ = M - r, i.e, if the orbits are
the same. As an example, in the case of a massive spinless particle, one
choice of state space leads to the usual classical movements of afree material
point, but other choices lead to other general appearances, which are much
less easy to interpret. Similar considerations are to be made with regard to
the movements containing a given event.

The elements of the Lie algebra of 9 define (linear) functions on 93+
and, as a conseguence, on each state space. They will be considered as
dynamical variables. In particular the functions defined by T = (1%, I2, 19),
p=(p% p% p°), E, and m, (cf. Section 2) will be considered as an abstraction
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of angular momentum, linear momentum, energy, and mass, respectively.
These functionstogether withg = (g, g, g°) and those given by the canonical
coordinates of R* give us 15 canonical dynamical variables.

The remainder of this section is devoted to proving that this way of
looking at classical state space agrees with the usual one, up to diffeomorph-
ism, at least for the classical free massive spinless particle, and to justifying
the definition of the canonical dynamical variables we have done. In this
section we follow the ideas developed in the relativistic case [8]. Most of
them are inspired in by ref. 14.

Configuration space-time for a classical (spinless) free particle with
nonzero mass misinterpreted as being an abstract four-dimensional manifold
M. Each inertial observer, Risaglobal chart dg = (Xk X&, X&, tr). Of course
M is diffeomorphic to R*.

We consider a family of inertial observers such that changes of the
global chartsare given by elements of the connected component of theidentity
of the Galilel group, i.e., if Rand R" are members of the family, there exists
(A, b, ¢, e) in the connected component of the identity of Galilei group such
that dr ° gt is given by

)_(R/:A)_(R+btR+C
tR/:tR+e

(3.2)

where Xg = '(X&, X3, X3). _

Charts ¢ give rise in the canonical way to charts of TM, ¢g =
(Xrs TRy Xry tR) = (K&, XB, X3, tr, X&, X3, X3, tr), Where the X; and g are given
by X&(v) = v(XR), i = 1, 2, 3, tx(V) = W(tg), for all v e TM. The map
bRt o b is given by

Xz = AXr + big

tr = tr

Xz = AXg + btg +
P -

Hence, there exists a submanifold € of TM given by tz = 1 for each
inertial observer R. .

The restrictions to € of the ¢ are charts of €, provided that we forget
the (constant) tz. If we denote by the same letter, mapson TM asitsrestrictions
to ¢, this chart can be denoted by ¢ = (Xr, Xz, tr) = (X& X& X3
Xk, X& X3, tr). Thus each inertial observer R associates to an arbitrary point
of €, v, seven numbers ¢p(V) which are intepreted as giving velocity, position,
and time. Thus points of € will be called states and € itself, state space.
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The change of chart dgt ° dg is given by

)-_(R' = Ai_(R + b
)_(R' = A)_(R + btR + C (33)
tR’ = tR + e

These transformations define an action of the Galilei group on R’. Let
us denote by (X, X, t) the canonical coordinate system in R’. The differential
2-form Q, on R’ whose local expression is

3
Q=Y mdx Od¥ — dT Odt
i=1
with
1 3.
T=Zm) (X)?
2 =

and the vector field whose local expression is

0 d
= | _ J’- —
o =X ax ot
are left invariant by the Galilei action.
Thus, there exists awell-defined differential 2-form ) and avector field
X on € whose local expressions for each inertial observer R are

3
Q =Y mdxk Odxi; — dTg Odtg
i=1

with
138
Te=7m 3, (&)
2 9
and
Xl L
Xk ots

The motions of the particle under consideration are the trajectories of X in
€. We shall prove that € is canonically diffeomorphic to an orbit of % in
R* X 9B*.

As noted, the Galilei action on R’ preserves €),. We shall see that this
action has a “momentum map” from R’ into the dual of the Galilei Lie
algebra [14].
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If Z = (a, B, 7, d) e (R332 X R, we shall denote by Z the infinitesimal
generator of the action associated to Z, i.e., Z is the vector field whose flow
is given by the transformations associated to { Exp(—tZ)}.

A straightforward computation proves that

iy QO = dF(2)

where
R o (DD
F(2) =, X X ) + (B, 1P — MR + (v, P) — 8- + K(2)

Kisan arbitrary map fromthe Lie algebrainto R, (-) isthe ordinary Euclidean
product, and p = (pt, p? p°) = .

If one choose alinear K, one can define a linear map (the momentum
map) w from R into the dual of the Lie algebra by means of

w(v) - Z = [F2)](v)

fordlve R, Z e 4.
In terms of the basis { (Zg)*: i = 1, ..., 10} (cf. Section 2) we have

3
ho= El [(X X P)(Ze)F + (P — MX)(Za)¥iat P'(Zo)ise

AT (34)

Let us choose K = 0. By standard methods of Kostant—Souriau theory,
one can find an action of the Galilei group on the dual of its Lie algebra
such that p. becomes equivariant. If one identifies the dual of the Lie algebra
with R° by means of the basis composed of the (Zz)#, the action is given by

A bA eA o0 cXb
0O A eA O eb—c

(A b, ce- o= 0 0 A olotm b (3.5)
0 0 -HA 1 —b?/2

where b is the transpose of b, and b? = 'bb.

With this notation one can write
XX P
tp — mx
n= p (3.6)

—p?2m

The form of the action (3.5) leads us to consider the Bargmann group
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9B or its universal covering group, B [cf. (2.7) and (2.11)]. Let us consider
the action of % on R’ defined asin (3.1), for al L € %, x € R’, where now
- is the usual action of the Galilei group on R”.

If we denote by Y the infinitesimal generator of the action associated
toY e 9B, we have

IX QO = id(ﬂ-ogz.y QO

As a consequence of (3.4), one thus sees that
3 * . * . *
o= Zl [(R X P)'(dQ) - Z + (tp — MX)' (dQ) - Zi+s + P (dQ) - Zise]

- PPy 2+ M 37
isamomentum map for the action (3.1), where M is any fixed element of PB*.
If we take M = —m'(dQ)- Z;,, we obtain a momentum map which is
equivariant for the coadjoint action. In fact, we can identify the dual of the
Lie algebra of % with R by means of the basis composed of the '(dQ) -
Z;, so that the map i can be written as
XXPp
tp — mx
p (3.8
—p?/2m
-m

and the equivariance of {i with respect to the coadjoint action follows from
the equivariance of p. with respect to (3.5). .

As a consequence, the image of R’ by i is a coadjoint orbit of %. More
precisely, it is the orbit of (0, ..., 0, —m) by the coadjoint action. If « is
in the coadjoint orbit, its reciprocal image by [i is the image of an integral
curve of Xo, so that [ establishes a one-to-one correspondence between points
of the coadjoint orbit and trgjectories of X.

Now, let us consider the injective map

g (19 eR - (9, 0T 9) e R* X B*
The map g becomes equivariant when one considers in R* x * the
action given by
L O(s o) = (m(Q(L)) - s, Ad} )

where the action on R* on the right-hand side is the usua one of the Galilei
group. In particular, g(R”) is an orbit of this action.
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For each inertial observer R we define gz = g o dbgrand pr = i © dg,
o that gr = (bR, KR)- -

The map g enables us to identify € with the orbit g(R”) of %, but this
identification depends on R. In fact, if R and R’ are related by (3.2), then

Or © glil = (br ° ¢§11 AdzkA, b, c e a))

where a is arbitrary. Thus, these two ways of identifying state space with
the orbit are related by one of the transformations of the action.

The action of B on € such that ¢r becomes equivariant obviously
preserves (), and g is @ momentum map for this action.

For al R, the image of .y is the coadjoint orbit obtained by projection
of g(R") onto %B*. Each wg maps in a one-to-one way tragjectories of X to
elements of the coadjoint orbit. Thus the coadjoint orbit will be called the
space of movements.

Each element of the Lie algebra can be considered as a (linear) function
on the dual, and thus on R* X %*. With this interpretation we have

dQt-Z'ogr = (%= X PR)
dQ™'- Z"30 gg = (trPr — MXR)'
dQ™t- Z"%e gr = pr (39

_ (Pr, Pr
1.710, 4 — PRy Pr?
dQ Z Or om

dQt-ZMogg=—m
where pr = MXg.

Then
"o gr = (%= X PR
g °gr = (MXg — trPR)’
p'° gr = Pk (3.10)
megr=m
which justify our interpretation of the dynamical variables |, ..., m.

4. QUANTUM STATES

In this section we define guantum states of a particle whose classical
state space is a given orbit of % in R* X %B* (cf. Section 3).
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The idea comes from geometric quantization, in the sense that quantum
states correspond to sections of a Hermitian line bundle on a coadjoint
orbit (movement space) that are invariant along a certain isotropic foliation.
According to the approach developed in the relativistic case [8], the foliation
will be fixed by the condition that physics must not depend on the choice
of state space corresponding to the given movement space.

For the most part we state the results in terms of the principal circle
bundle canonically associated to the Hermitian line bundle. Thus, the starting
point will be a Boothby—Wang fibration [4] on the given coadjoint orbit, i.e.,
a principal bundle with the circle St as structural group, provided with a
connection whose curvature form projects onto the canonical symplectic form
of the coadjoint orhit. .

We also require the total space to be a homogeneous space of % for an
action that is a lift of the coadjoint action (i.e., makes the bundle projection
equivariant) and preserves the connection. Under these circumstances the
total space is a homogeneous contact manifold.

For the sake of completeness, let usrecall some known results concerning
the homogeneous contact manifolds under consideration. These results and
a study of more genera situations can be found in ref. 15 and 5-7. Some
of these generdizations also have interest from the point of view of the
present paper. In fact, one can consider each covering of a coadjoint orbit
as a candidate for movement space, and the geometric construction that
follows would remain valid. For the purposes of this paper, it is enough to
consider the coadjoint orbitsthemsel ves. For fiber bundles, we usethe notation
of ref. 10.

Let G be a Lie group. A fibration as desired on the coadjoint orbit of
a e G* exists if and only if there exists a surjective homomorphism, C,
from theisotropy subgroup at o, G,,, onto the unit circle, S*, whose differential
isa. Then a and its coadjoint orbit are said to be quantizable. Here, we can
consider the differential of a homomorphism onto S* as an ordinary 1-form
by identifying the Lie algebra of S* to R. This identification is defined by
the condition that the exponential map becomes Exp(a) = €™ for al a e
R. a and its coadjoint orbit are said to be R-quantizable if there exists a
surjective homomorphism from G, onto R whose differential is o. The Lie
algebra of R is identified with R in such a way that the exponential map
becomes the identity. Of course, if a is R-quantizable, it is quantizable. In
ref. 7 a dightly more general concept of quantizability is used, but it is
unnecesary for the purposes of the present paper.

In what follows we assume that « is quantizable and C, is an homomor-
phism from G, onto the unit circle, whose differential is a. We identify the
coadjoint orbit with G/G, in the canonica way.

We define an action of S* on G/KerC, by means of
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(g Ker C,) Os = gh Ker C, (4.2)

where h is any element of G, such that C,(h) = s. Actualy (G/Ker C,) (G/
G,, SY) is a principa fiber bundle, the bundle action being the preceding
one, and the bundle projection, the canonical map from G/KerC, onto G/G,,.

The differential 1-form « projects to an invariant contact form  on
G/KerC,.

Let Z(w) be the vector field defined by iz,o = 1, iz, do = 0. All the
integral curves of Z(w) have the same period. If we denote by T(w) the period
of any integral curve of Z(w), then w/T(w) is a connection form. Since the
structural group is Abelian, the curvature form is dw/T(w). There exist a
unique 2-form on G/G,, whose pullback under the bundle map isthe curvature
form. This form is symplectic and its cohomology class is integral. It will
also be called a curvature form. Its reciprocal image under the canonical map
of G onto G/G,, is da/T(w). These symplectic manifolds and its covering
spaces are Hamiltonian spaces of the group G [11].

The horizontal lift of curves can be described as follows. Given a curve
v in G/G,, the horizontal lift of v to g KerC, is

J(t) = (Y(t) KerC,) Dexp(—ZTri Jl a> (4.2)
Yi[o,4

where ¥ is any lifting of v to G such that ¥(0) = g, and the vertical bar
means restriction.

Associated to this principal fiber bundle and the canonical action of S*
on C one can consider the 1-dimensional vector bundle whose total spaceis
(G/KerC,) Xst C. Thisbundleisacomplex line bundle, the addition in each
fiber is given by

[gKerC,, 4 + [9' KerC,, 2] = [gKerC,, z + Cu (97" 9')Z]]
and the multiplication by complex numbers by
a- [gKerC,, 7 = [g KerC,, a7

This vector bundle becomes Hermitian when one defines in each fiber
the Hermitian product

(lgKerC,, 7, [¢' KerC,, 1) = ZC.(97'9")Z

It is well known that the sections of the Hermitian line bundle are
in one-to-one correspondence with the functions on G/KerC,, f, such that
f((gKerC,) Os) = s (g KerC,) for al s € S, g € G. These functions
will be called from now on pseudotensorial functions. This correspondence
is as follows. If f is a pseudotensorial function, the corresponding section
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sends m e G/G, to [r, f(r)], wherer is arbitrary in the fiber on m. If o isa
section of the Hermitian line bundle, the corresponding pseudotensorial func-
tion f is defined by o(w(r)) = [r, f(r)] for dl r € G/KerC,, where 7 is the
bundle projection.

The sections of the Hermitian line bundle are called prequantum states.
Sometimes we use the same denomination for the corresponding pseudoten-
sorial functions. .

Let us return to the case where G = 9. As seen in Section 3, there are
many candidates for state space for the particle whose movement space is
the orbit of «. In fact, for each (g, t)) € R* the orbit of ((qo, to), o) € R*
X 9B* is one of them.

If state space is the orbit of ((qo, to), @) and (g, t) € R* the movements
containing the event (g, t) are the Ad{pceaa such that (A, b, c, e a) O
(9o, to) = (0, 1), i.€., the Ad{a p,c.ea SUCh that A, b, and a are arbitrary, ¢ =
q— Agp — btg, and e = t — t,. This set depends on the choice of (qg, to).

We call quantum states the prequantum states which are independent of
the preceding choice in the following sense.

Since

AdfA,b,q—A-qo—bto,t—to,a)a = Adfl,o,—Aqo—bto,—to,O) ° Ade,b,q,t,a)Ol

we say that a prequantum state, considered as a section, ® of the Hermitian
line bundle, is independent of the choice of (g, to) if its value on the right-
hand side of the preceding equation is independent, up to parallel transport,
of the actual value of (qo, to), i.e., if & (Ad{oceoy) = T(d(y)) for al vy in
the orbit and (c, €) in R* where 7 is the parallel transport along any curve
joining y with Adi o.c.eqy in the orbit of y by the subgroup R, = {(I, 0, q,
t,0: q € R3t € R}. An equivalent statement of this condition is that the
corresponding pseudotensorial function be constant along the horizontal lift
of such a curve; thus we have the following:

Definition 4.1. A quantum state is a prequantum state whose correspond-
ing pseudotensorial function is constant along the horizontal lift of any curve
whose image is in a orbit of the subgroup R,.

Let us denote by «; the components of o in the basis composed by the
(dQ) - Z', and aizge = (a7, atg, to).

Lemma 4.2. There exists a unique action of R, on G/KerC,, whose orbits
are horizontal and such that = becomes equivariant. This action is given by

(1,0,q,t, 0) I((A, b, ¢, & @) KerC,)
= ((A,b,g+ct+ e aKeC)
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DeXp{ _2Tfi[OL789 t/A (q - tb) + (Xlot + a1 tb(tb/Z - q)]} (43)

for al g € R% t € R, where [(IJon the left-hand side stands for the new
action and Oon the right-hand side corresponds to the bundle action.

The proof of thisresult is very close to that of Lemma 4.1 of ref. 8 and
is left to the reader.
This action will be caled the horizontal action.

Corallary 4.3. The quantum states are the prequantum states that corre-
spond to pseudotensorial functions left invariant by the horizontal action.

Let (A, b, c, e a) e B, q e RSt e R. Let usdenote by (I, 0, g, t, 0)
[ the diffeomorphism associated to (I, O, g, t, 0) by the horizontal action,
and by (A, b, ¢, e, @)- the diffeomorphism associated to (A, b, ¢, €, a) by the
usua action. Then:

Lemma 4.4. We have
(A;b,c,e @) ((1,0,qt 0) D)
= ((1,0,Aq + bt, t,0) () o (A b, c, e a))

Proof. Since (I, 0, 0, 0, @) is in the center of & for al a e R, its
corresponding diffeomorphism by the coadjoint representation is the identity.
In particular (1, 0, 0, 0, &) € B, for dl a e B*.

We also have

(1,0,0,0, @ = Expg (aZyy)
so that
C.((1,0,0,0, &) = C, ° Expz(aZis) = Expst © dCy(aZy)
= EXpst (aayy) = €2mae, (4.9
Foral (A, b/, c, e, a) e %, we thus have
(((A,b,c,e @) ((1,0,q,t, MDA, b, ¢, €, a) KeC,)
= ((A,b,c,e al,0q,t 0)A, b, c, €, a)KeC,)
Dexp{ —2mi[azge 'A'(q — th') + aset + agy '(0'Y2 — )]}
= ((1, 0, Ag + bt, t, 0)(A, b, ¢, e a)(l, 0, 0, 0, 'bAq + b?t/2)
X (A, b, c, €, a)KeC)
Oexp{ —2mi[azge 'A'(Q — tb') + st + g 'b'(0't/2 — )]}
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= ((1,0, Aq + bt, t, 0)(A, b, c, e @)(A', b, ', €, a)
X (1,0, 0,0, 'bAq + b%/2) KerC,)
Oexp{ —2wi[azge '"A'(q — th') + oot + aqq ' (0't/2 — )]} (4.5)
As a consequence of (4.4), the last of (4.5) coincides with
((1, 0, Ag + bt, t, 0)(A, b, c,e a)(A', b, c', e, a) KeC)
Dexp{ —2mi[azge ‘A'(q — th') + ot + ayy D'(D'Y2 — )]

— ap(bAq + b/2)} (4.6)
and a straightforward computation proves that this expression coincides with
(((1, 0, Aq + bt, t,0)(D) ° (A b, c, &, a)))((A", b, c',e,a) KeeC,) m

It follows that:

Corollary 4.5. The usua action transforms horizontal orbitsinto horizon-
tal orbits.

The usual action thus defines a transitive action in the set of horizontal
orbits. The isotropy subgroup at the horizontal orbit of KerC, is composed
of the (A, b, ¢, e a) such that there exist g € R3, t € R, such that

(A b, c,e aKeC,=(,0,q,t, 0) [IKerC,
= (1,0, q,t, 0) KerC, e 2m(a7se9+a10)
=(1,0,q,t, 0)gKerC,
where g is an element of %, such that
C.(g) = e 2rilarag+eg)

As a consequence we have.

Lemma 4.6. The isotropy subgroup at the horizontal orbit of KerC, is
composed of the (1, 0,9,t,0)g,q € R3, t € R, g € %B,, such that

Ca(g) e2’1Ti(()L789q+0llot) =1

In what follows we characterize this subgroup as the kernel of a cer-
tain homomorphism.

Let (%B.)o be the image of %, under the homomorphism : (A, b, c,
ea) e - (Ab) e B

Lemma 4.7. The map from (B,), into S, (C.)o, given by
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(Ca)o(A, b) — CQ(A, b, C e a) e*21Ti(0£789C+0L109+0111a)
for al (A b, c, e a) € B, is awell-defined homomorphism.

Proof. The kernel of |5, is obviously contained in {(I, 0)} X R®.
From equation (2.11) it follows that the kernel is composed of the (I, O, c,
e a) € % such that

(654 0 (654
Clag | = 0 , —e| ag| + Caqp =
Qg 0 Qg

Since these are linear equations, the kernel is arcwise connected.

If (A, b, c e a),(AbCc,e,a)e B, wehave (A b, c, e a)A b,
c,e,a)t=(,0,c—c,e—¢€,a— a) e Ker(m]z,). Then we define
vyt) = (1, 0, tlc — ¢'), t(e — €), t(a — a')), which is a curve in
Ker(m|3,), and we have [7]

C.((A b, c e a)A b c,e,a)™?

wion

= exp{ 2mi[azgy(C — C) + ago(e — €) + an(a - a)}

O OO

Then we have
CQ(A, b' C, e a) e72‘rri(0<789C+aloe+alla)
= C,(A b, C, €, a’) g 2milazgc Tegee tag;a)

This proves that (C,), is well defined. One can convince oneself of the fact
that (C,)o is a homomorphism by direct computation. m

We also define C,: (B)o X, R® — S* by means of
éu(A, b, c, e a) = ((C.)o(A b)) @2mi(azgeCtaggetagga)

A straightforward computation proves that C, is a homomorphism. It
is obviously an extension of C,.

Lemma 4.8. The isotropy subgroup at the horizontal orbit of KerC,
is KerC,.

Proof. As a consequence of Lemma 4.6, any element of the isotropy
subgroup has the form (I, O, g, t, 0)g, where q e R:%teR,ge B, O
that it isin (%.)o X, R% and moreover
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- C(X(g) e2ﬂi(0‘789q+alot) = éa(g)éa(l’ 0’ q’ t’ 0) = COL((IY 07 q7 t’ 0)g)

It follows that the isotropy subgroup is in KerC,.

On the other hand, let (A, b, c, e, @) € B,, o € R? &, a € R, be
such that (A, b, ¢y, €, &) € KerC,. Then (A, b, c, e a) = (1,0,0,0, ag —
a)(A b, ¢, g @), sothat (A, b, c, e a) isin &B,, and we have

(A, b, co &, ) = (1,0,c0 — ¢, & — & 0)(A b, c, e a)
and
C.(A, b, c, e, ag) €™(*789(Co~ )T 10(€~€))
= a(A b, c, eaO)C(,(I 0,co—¢C e —¢0)
C.(1,0,c0— ¢, & — & 0)Cu(A, b, ¢, & a)
=CJ(1,0,co—c, & — € 0)(A b, c ea) =1
It follows that (A, b, ¢y, €, &) is in the isotropy subgroup. m

The space of orhits is thus canonically bijective to /KerC,.

In the remainder of this section we assume that « is such that (B0 X
R®isclosed in % and has a finite number of connected components and that
C. is continuous. These facts actually hold for &l quantizable o, but will
not be proved here. A proof can be obtained by direct verification, using a
classification of the coadjoint orbits of % that Jaime Hoyos has found and
will be published elsewhere.

Thus, KerC, isaclosed subgroup of 9, so that 9/Ker &, hasthe canonical
structure of a differentiable manifold. We consider the space of orbits of the
horizontal action provided with the topology and differentiable structure
which makes the canonical bijection onto %/KerC a diffeomorphism.

Since B, C (B,)o X, RS and KerC,, C KerC,, we have canonical maps
such that the dlagram in Flg 1 is commutative.

The homomorphism &, gives us an isomorphism of (B,) X, R¥KerC,
onto S*. If we identify these groups by means of that homomorph|sm we
obtain aprincipal fiber bundle B/KerC,, (B/((B,)o X, R®), SY). The horizontal
arrows in Fig. 1 give us a homomorphism of prlnci pal circle bundles.

B /KerCoq B /KerCq

B /B B /((Ba)o xr R®)

Fig. 1. Fiber bundles for geometric quantum states.
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The upper horizontal arrow corresponds to the map that sends each
element of B/KerC, to its horizontal orbit. Since quantum states correspond
to pseudotensorial functions left invariant by the horizontal action, they will
be identified with unrestricted pseudotensorial functions on %B/KerC.,.

5. WAVE FUNCTIONS

Let H and K be closed subgroups of aLie group G. Let us assume that
there exists an action of G onthelefton H, (g, h) e G X H - gOh € H,
such that (g Oh)y*gh e Kfordlg e G, h e H.

We define

v: (g,h) e GXH - (gOh)y"gh e K

For an arbitrary closed subgroup L of G a straightforward computation

proves that
®: (g, (hkk NL) e G

K
KNL

K
X (H X A L) - (g O0h,v(g, h)kk NL) € H X (5.1

is an action on the |eft.

Example 1. Let H and K be Lie groups and s a homomorphism from K
into the group of the automorphisms of H. In the semidirect product K X
H the subgroups{ e} X HandK X {€} are canonically isomorphictoH and K,
respectively, where e represents the identity element of K and H, respectively.
We define an action of K X H on {€} X H by means of

(k, h) O(e, h") = (e, hs(h))

where s, stands for s(k), and we see that the conditions hold with v ((k, h),
(e h)) = (k o).

A particular case is the Poincaré group. The geometrical construction
we made in this section in general has been made in the case of the Poincaré
group in ref. 8.

Example 2. The group 93 is a semidirect product (cf. the end of Section
2), so that we can do the preceding construction, according to Example 1,
withH = R>and K = &,

Now we proceed otherwise. Let H = Ryand K = {(A, b, 0,0, a): A
VU (2), b € R3 a € R}. We define an action of % on H by means of

(A;b,c,e,@ 01,0, %xt0 =(,00AX+bt+c e+t 0)

where Ax stands for q(A)x, as said at the end of Section 2, and we see in
this case that
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v((A,b,c,ea),(1,0,xt0)=(ADb 00 a+ bAx + tb/2))
The corresponding action of B onH x (K/(K N L)) is given by
d((A b, c e a),((,0xt0),A,b,0,0 a)K NL))
=(1,0,AX+bt+ct+e0),AA,AD' + Db, 0,0,a+a
+ b(Ax + th/2))K N L) (5.2

Returning to the general case, if we denote by e the identity element of
G, we have:

Proposition 5.1. If K N H = {€}, the actions of G on H and on H X
(K/(K N L)) are both transitive. The isotropy subgroup of G a e isK for the
action on H. The isotropy subgroup of G a (e, K N L) is K N L for the
actionon H X (K/(K N L)).

Proof. If h, h" € H, we have v(h, h") = (h Oh’)"hh’, so that v(h, h")
e KN H={e. Then hOh'" = hh’ and, as a particular consequence, the
action on H is transitive.

Let Isotr(e) be the isotropy subgroup of G at e for the action on H and
Isotr(e, K N L) be the isotropy subgroup of G at (e, K N L) for the action
onH X (K/(K N L)).

If g e Isotr(e), we have v(g, €) = (g Ue) 'ge = g, sothat g € K. If
k e K,wehavev(k e = (ke) %k sothat k Je e KN H = {€} and it
follows that k e Isotr(e). As a conseguence Isotr(e) = K.

Now, let h € H, k e K. We have

P(hk, (e, K N L)) = ((hk) Te, v(hk, &K N L)
— ((hk) De, ((hk) D0&)"hkK N L)
— (hOe, (hOe)thkk N L) = (h kK N L)

which implies that the action in H X (K/(K N L)) is transitive.
On the other hand, g € Isotr(e, K N L) if and only if g e = e and
v(g,e) e KNL,ie,ifandonlyifge KNL =

Inthecase K N H = { €}, wethus obtain an equivariant diffeomorphism
ot from G/(K N L) onto H X K/(K N L) given by

e (gKNL) =g0O(eKNL)
= (gUe v(g, e KNL)
=(g0e (gUe) gk NL)

whose inverse is obviously given by
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e (KKNL)eHX S hkKNL e

KNL KNL

The composition of that map with the canonical one leads us to the
surjective submersion given by

(5.3)

K G
. X—— > — .
¢: (hhkKKNL)eH KL hkL e 3 (5.4

which also is equivariant.
Remark 5.2. For each h fixed in H, the restriction of ¢ to the subset
{h} X (K/(K N L)) is easily seen to be injective.

In the remainder of this section we only consider the four cases arising
from Example 2 when L is each one of the denominatorsin the homogeneous
spaces that appear in Fig.1. The maps given by (5.4) in the four cases under
consideration are denoted by (5)—(8). The maps appearing in the diagram of
Fig. 1 are denoted by (1)—(4) as indicated in Fig. 2.

Since the group law in K is

(A/b,0,0,8 L (A, b,00a)=(AA, A +b,0,0a+ a)

we see that K is isomorphic to the direct product of Bo by R. Thus, we
denote K by B, X R in what follows. In the same way, the subgroup of K

~ (5)

Ryx — Box® B
X KerCc,n(Bo xR) KerC,
\(ll) (1')/
Ry x B~Q x~IR (6) B~
Keréan(Bo xR) KerC,
(3)
9) (12) (2)
~ 7
R4 x _ Bo xR _ ( ) E
(Ba)ox.R*)n(Bo xB)  (Bg)ox.RS
o E T B
_ (8) _
Rox Boxn B
By n(Bo xR) Bo

Fig. 2. Fiber bundles for quantum states. First diagram.
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composed of the (A, b, 0, 0, a) such that (A, b) e ((9B,)o is denoted by
(%a)o X R.

The spaces where the maps (5)—(8) are defined are homogeneous spaces
and there exist canonical projections between them whose product by the
identity map of R, will be denoted by (9)—(12). All these geometrical objects
are related by the commutative diagram appearing in Fig. 2.

We obviously have () X; R5) N (By X R) = (B,)o X R. On the
other hand, the maps

- G, ] %
(A, b)(%a)o IS (%a) (A b, 0, 0, 0)(%a)0 X, R W
and
Bo By X R

(A b)(B)o € ~ (A/b, 0,0, 0)(B)o X R e

(Ba)o (By)o X R

are easily seen to be diffeomorphisms. When these spaces are identified by
means of these diffeomorphisms, the map (7) becomes the projection onto
the second factor.

Let_us denote by C, (resp. C!) the restrictions of C, (resp. C,) to
B, N (Bo X R) (resp. (973(x)O X R). Then the commutative diagram in Fig.
2 becomes the commutative diagram in Fig. 3, where now (6) is the map
sending ((I, O, x, t, 0), (A, b, 0, 0, @) KerC,)) to (A, b, x, t, @) KerC,.

()

R4 X g’% %CQ
\“” "/
By x (6) =1
R KeréI’f KeBy-a,
(9 ) | | @ ©
~ (7) ~
R4 X 4§J— — —§0—
(10) (Ba)O ( a)O (4)
/ \
(8)
Ry x _BOL L
Ba n(Bo xK) Bo

Fig. 3. Fiber bundles for quantum states.
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Let us comment on the physical significance of the botton row in the
diagram. The homogeneous space %/, is identified in the canonical way
to the coadjoint orbit of «, i.e., to movement space. Let us assume that the
origin in the space of events 0 € R* is one of the events contained in the
movement a, i.e, that state space is the orbit of (0, ) in R* X %*

The isotropy subgroup at (0, ) is (Bo X R) N B, s0 that state space

can beidentified with B/(Bo X R) N B,. But g* [cf. equation (5.3)] enables
us to identify this space with
By X R
Re X 51 Box B)
When this identification is made, the canonical map from states space onto
movement space becomesthe map (8). Thusthe map (7) must be considered as
being a canonical map from “equivalence classes’ of states onto “equivalence
classes’ of movements.

As a consequence of Remark 5.2, the restriction of (8) to

e NOYE

establishes a bijection from this set onto {(A, b, x, t, B, A € SU(2), b
R3, a € R}, which is the set of movements containing (X, t). When one
identifies, as above, state space with R, X ((Bo X R)/(Bo X R N B,)), the
set{(1,0,% t, 0} X (Bo X RY(Bo, X R N B,)) is thus identified with the
set of possible states in the event (x, t), each of these states corresponding
to a movement passing through (x, t). In particular, the same differentiable
manifold (By X R)(By X R N B,) parametrizes the set of movements
passing though an arbitrary event. Notice that when two different events are
given, (x, 1), (X', t') e R*, an element of (B, X R)/(Bo X R N 9B,) represents
a movement passing through (x, t) and a movement passing through (x’, t'),
but these movements are in genera different.

With the identifications we have done, (2) is the map that sends (A, b,
c, e a) Ker€, e BIKerC, to (A, b)(B.)o € Bo/(Bo)o.

The map (12) is the product of the identity of R, by the map defined
by sending (A, b, 0, 0, a) KerC., e B/KerC, to (A, b)(B)o € Bo/(B.)o, and
is the bundle projection of a principal fiber bundle whose structural group
is (B X R)/KerCL.

Thehomomorphism c establishesacanonical isomorphism C. of (B)o
X R)/KerC., onto the subgroup S = CL((B)o X R) of St.

Lemma 5.3. The subgroup S is closed in S* and C,, is a Lie group
isomorphism.
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Proof. If the differential of C is not zero, the subgroup S contai ns a
neighborhood of the identity element of S?, so that it is al of St. Then C,,
is easily seen to be a diffeomorphism.

If the differential vanishes, C,, is constant on each connected component
so that, as a consequence of the fact that the number of connected components
of (B.)o X R isfinite, CL((B.)o X R) is finite. The map C,, is in this case
an isomorphism of finite Lie groups. m

_ We identify the Lie group ((B.)o X R)/KerC, with S by means of
Ce.
The principa fiber bundle

By X R B
(R“ X el )(R“ " Go’ S)

whose bundle projection is (12), will be denoted by Il,. The principa

fiber bundle
Bo X R\[ By s
Keré& (%a)o ,
will be denoted by IT and its bundle projection by .
Now we are interested in a characterization of the pullback by (6) of

the quantum states.
As a consequence of Equation (2.11), we see that the map

y q(u) 0 —-b
(U b) e By - | —bgU) 1 b¥2] e GL(5, R) (5.5)
0 0 1
is a representation and also that, if (Ug, by) € (973a)0, we must have
a7 a7
a(Uo) 0 —bo\[ @ Qg
—bqU) 1 Dbg/2])| @ | = oo (5.6)
0 0 1 01 Q1o
Q11 Q11
Then, the following map is well defined:
a7

qu) 0 -b\/[ as

(U, ))(Bo)o € B (Bo)o — (—tbq(U) 1 bZ/Z) a | ¢ RS (5.7)
0 0 1 Q10

Q11
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We denote by P the function defined on By/(%B,), with values in R4
given by the first four components of the map (5.7).

The function defined on the coadjoint orbit whose components are (p*,
p? P, —E) (cf. Section 3) takes in Ad{y pceqa the value P((U, b)(%B),)o).
Then, if we identify the coadjoint orbit with %B/%,,, we see that the function
Y(pt, p? p°, —E) is projectable in %B/(%.,,), under (4) and its projection is P.

Theorem 5.4. The pullback by (6) maps in a one-to-one way the set of
quantum states onto the set composed of the functions on R, X (%, X R)/
KerC, having the form

Wi((1, 0, x, 1, 0), (A, b, 0, 0, &) KerCy)
= f((A, b, 0, 0, a) KerC.) e 2m(xD. P(ADHa)o) (5.8)

where f is a pseudotensoria function of the principa fiber bundle I, and
(-, -y stands for the Euclidean product of R*.

_ Proof. We denote by x, the complex-valued function on R, X
(Bo/(B)o) given by
Xo((1, 0, %, 1, 0), (A, b)(@By)o) = em(C:0: PADGei
The map x = xo © (12) is such that
x((1,0,%t,0), (A b, 0,0, a) KerC;) = em@x0P(AD)(a)o)

Let F be a quantum state (i.e., a pseudotensorial function on 973/Ker€:a)
and ¢ = F < (6). We have

(ex)((1, 0, % t, 0), (A, b, 0,0, &) KerC;)
= g2 (DPADGINE(A, b, X, t, ) KerC,)
— g2 P(AD)(B)o))
X F((A, b, 0,0,a)(l, 0, 'A(x — bt), t, (b¥2)t — bx) KerC,)
= @2mi(xD).P(AD)Bo)
X [Col, 0, 'A(X — bt), t, (b22)t — X)) "L F((A, b, 0, 0, &) KerC,)
— ezwi{<(x,t),P((A,b)(éa(,)o)>—(a789tA(x—bt)+alot+all((b2/2)t—tbx))}
X F((A, b, 0, 0, a) KerC,)
= F((A b, 0, 0, a) KerC,)

Thus ¢ has the form W; where f is the pullback of F by the canonical
projection of (B, X R)/KerC. onto B/KerC,.
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Now, let f be a pseudotensorial function of IL We prove in what follows
that W is projectable by (6) and the projection is pseudotensorial. To prove
all that, it suffices to see that the relation

(1,0, % t, 0)(A, b, 0, 0, a) KerC,
=(,0,x,t,0(A,b,00 a)KerC, Os (5.9)
imply
Wi ((1, 0, x, t, 0)(A, b, 0, 0, a) KerCl)
=3W((1,0,x, t', 0)(A", b, 0, 0, a') KerC.) (5.10)

foradlse Shx,be R%aeR Aec Q). .

If equation (5.9) holds, there exist (Ay, bo, Co, €, @) € (Bo)o X, R®
such that C,(Ag, bg, Co, €, ag) = sand (A, b, x, t,a) = (A’, b, X', ', @")(Aa,
bo, Co, €, ). Then (A, b) = (A, b')(Ag, bg), x = A'cg + b'egg + X', t =t/
+e,a=a + a + b'Acy + b'%e/2 and

W ((I, 0, %, t, 0)(A, b, 0, 0, a) KerCy)
= f((A, b, 0, 0, a) KerC,) e 2m{x.P(AD)(E0)
= f(((A', 0')(Ao, bo), 0, 0, 0) KerC) e 2miana g2m((xd.P(Ab)Ha)o)
= f((A', b, 0, 0, 0) KerC.)(C.)o(Ao, bo) €2i(@118+((xD.P(Ab)Ba)o))
= f((A", b, 0,0, @) KerCl) (Co)o(Ao, bo) €2mi(211(@=a)+{(x).P(Ab)(%a)o))

but a straightforward computation proves that
(%, 1), P(A, B)(Bo)o)) = a7aeCo + a0 + 1180
+ (¢, 1), P(A, B)(Bo)o)) + an(@ — a)
and (5.10) follows. m

The map defined by sending each quantum state F to the f such that
F o (6) = W is an isomorphism [ps] of the complex vector space of quantum
states onto the complex vector space PS of pseudotensorial functions of TL
The preceding theorem enables usto interpret quantum states as pseudo-
tensorial functions of I, or sections of the associated Hermitian line bundle.
The interesting fact in this description is that these sections depend on two
separate variables, one of them describing an event and the other a class of
movements containing that event.
Our next step toward wave functions is to establish an isomorphism v
from the complex vector space composed of these sections of an, in general,
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nontrivia line bundle onto a complex vector space PW of functions on the
base space with values in a finite-dimensional complex vector space. The
elements of PW will be called prewave functions. This will enable us to
define an isomorphism [pw] of the complex vector space of quantum states
onto PW by sending each quantum state F to the image by v of the section
corresponding to F o (6).

The map v will be defined in the general case by immersion of our line
bundle in a trivial vector bundle, but this is unnecessary in the cases where
the line bundle is trivial. For example, if (C,), is trivia, the map

Si 06 A DI = RoX 35 - (X (45,0,0,0 Ka) < Ry
/0
y Box R
KerCl,

isaglobal section of (12) (if, moreover, a1, = 0, 2 isalso bijective). Hence,
both the principal and the line bundles are trivial. The sections of the line
bundle can be identified in a canonical way with vector-valued functions on
the base space. More precisely, the map defined by sending the section
corresponding to the pseudotensorial function F to the function F o 2 is an
isomorphism from the complex vector space of sections onto the complex
vector space of complex-valued functions on R, X (%O/(%a)o)

Then, in the case where (C,), is trivial, [pw] sends the quantum state
whose image by [ps] is f to the complex-valued function on R, X Bo/(B.)o,
Wy, given by

(1, 0,x, t, 0), (A B)(B.)o)
= f/((A, b)(B,)o) € 2™DPADG)0) (5.11)
where f' is given by
T ((A, b)(@a)o) = f((A, b, 0, 0, 0) KerCl)

We thus see that in this case the prewave functions are functions of the form
(5.12) with " arbitrary.

In the case where (C,), is not trivial, a way is given in Remark 5.1 of
ref. 8toimmersetheline bundlein atrivial bundle. Theideaisthe following.

If p isarepresentation of aLie group G in afinite-dimensional complex
vector space L, p inducesin acanonical way an action in the projective space
(the differentiable manifold of the one-dimensional complex subspaces) P(L)
of L.

Let L* =L — {0}, C* = C — {0}. If z e L*, we denote by [7] e
P(L) the one-dimensiona subspace containing z.
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Letz e L*, G, be theisotropy subgroup at z,, and G, be the isotropy
subgroup at [z)] We obviously have G, € G-

Now, let H be a closed subgroup of G such that G,) C H C Gp.
al h e H there exists k(h) e C such that p(h)zy = k(h)z,. The map k: h e
H - k(h) e C* isaLie group homomorphism whose kernel is G,.

Then H/G, is a Lie group and (G/G,)(G/H, H/G,) is a principal fiber
bundle. On the other hand, k gives us an action of the structural group
H/G,, on C by meansof hG,, [c = k(h)cforal h e H,c e C. Theimmersion
of the associated line bundle (G/G ><(H,G C into the trivia bundle ;:
(G/H) X L - G/H is defined by sending [Z(ézo, c](H,GZO) to (gH, cp(g) - Z).

This map is an injective homomorphism of vector bundleswhich enables
us to define an injective homomorphism from the complex vector space of
sections of the former into the complex vector space of L-valued functions
on G/H as follows: if f is a pseudotensorial function on G/G,, the above
map transforms the corresponding section of the associated line bundle into
a section of 1r; whose composition with the canonical projection on L is the
L-valued function on G/H, ¢x, given by &(gH) = f(9G,) p(9) - -

In order to apply this construction to our case, we assume that there
exists a representation p of B, X R in afinite-dimensiona vector space L
and z, L such that:

L p(9)2 = Ci9)20, 09 € (Bo)o X R.
2. The isotropy subgroup at zo, (%o X R),,, is contained in (B0 X R.

Under these circumstances, we say that (p, L, ) is a trivialization of
C., and we have (B X R),, = KerC, C (9]3m)0 X R C (Bo X R)yy- Then,
if wedenote (9730[)0 X R by H, the homomorphism k of the preceding dlscuss on
coincides with CL.

The map [pw] is defined in this case as sending the quantum state F to
the L-valued function ¥, where f = [ps](F), given by

Wi((1, 0, %, t, 0), (A, b)(%.)o)
= Wi((I, 0, x, t, 0), (A, b, 0, 0, &) KerC.)p(A, b, 0, 0, @) - 7
= f((A b, 0, 0, @) KerC) e 2rOPADGI0 o(A b, 0,0, a) - z, (5.12)

foral (1,0, x1t0) € Ry, (A,b, 0,0, 8 € By X R.

The prewave functions in this case are thus functions having the form
(5.12) with f pseudotensorial in IL

_The complex vector space of quantum states is a space of representation
for %: to each ge % there corresponds an isomorphism that sends each
gquantum state F consdered as a pseudotensoria function on B IKerC,
to Fo g %, where g~ means the diffeomorphism of %/KerC, canonically
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associated to g. This representation then translates by means of [ps] (resp.
[pw]) to a equivalent representation on PS (resp. PW), which will be denoted
by pps (resp. ppw). We now proceed to describe these representations.

If g = (A", b, x,t,a), Fisaquantum state and W its pullback by
(6), the pullback of F o g™t is W; o ®4-1, where ®g¢-1 is the diffeomorphism
of Ry X ((Bo X R)/KerC,) associated to g~* by the action ® given by equa-
tion (5.1) in the case where L = KerC,.

We have

W, o d-1((1, 0, X, t, 0), (A, b, 0, 0, &) KerC,)
=W (g1 0(1, 0,%1t0),vg? (1,0 % t, 0))(A b, 0,0, a) KerCl)
=Wi(g10(1,0,%1,0), (AL —A"%,0,0 —a — b4'/2+ (b, x)
— YA "1p') (A "X — A W'H2))(A, b, 0, 0, a) KerC))
=W (g *0(,0,x1t0), (AL, —A"1,0,0, —a’ — b'2t'/2 + (b, X')
+ bA/2 — W'x)(A, b, 0, 0, a) KerCy)
=f(A"LA A Yb—b)00a—a +bt—t)2
+ (b, X — X)) Keré&) ewai<g’1E(x,t),P((A’,b’)’l(A,b)(@%a)o»
— f(Ar—lA, A/—l(b _ b’), 0, 0, 0) Keré&) @ 2mi(@—al +{b' X —x+b' (t—t')2)ayy
X e*Zﬂi<9’1E(x,t),P((A’,b')’l(A,b)(@a)o»
= f((A', b’, 0,0,0)"YA, b, 0, 0, 0) KerC,,
X efZﬂi(a*a’+(<xf><’.t*t’),P((A,b)(OJ’Sa)o)»
= f((A", b, 0,0, @) YA, b, 0, 0, 0) KerCy) e 2m—xt=t)P(AD)(Falo)
Then we see that
pe(Q)(f) = €™ OPm fo (A ', 0,0, &) (5.13)
On the other hand, for any prewave function ¥; we must have
Po(@)(Wr) = Vo gar)

so that, of course, (5.13) aso determines p,,. Now we shall give a formula
that determines p,,,,(9)(Wr) more directly in terms of ;.

Let us first consider the case where (C,)o is not trivia and (p, L, z) is
atrividization of C. One of our preceding computations leads to
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(P @((T)(, O, X, 1, 0), (A, b)(B)o)
= f(A'1A, A'"{b — b'), 0, 0, 0) KerC))
X e—zﬂi«g—1E(x,t),P((A',b')—l(A,b)(.oiau)o)>—a'+<b',x'—x+b'(t—t')/2>)all)
X p(A, b, 0,0,0) -z

_ On the other hand, if we denote by @y the diffeomorphism of R, X
(Bo/(B)o) corresponding to g by the action given by (5.1) in the case where
L = (Ba)o X, R5 we have

Wy o dyg-1((l, 0, x, 1, 0), (A, b)(@B.)o)
= W;o ®y-1((I, 0, x, t, 0), (A, b, 0, 0, 0)(973u)0 X R)
= W (gt O(, 0, x, t,0),
(AA A" Y(b—Db'),0,0, —a + bt —t)2
+ (D, X' = X)(Bo)o X R)
= W(g t O(1, 0, x, t, 0), (A", b') XA, b)(%B.)o)
= f((A''A, A'"{b — b'), 0, 0, 0) KerC.)
X @ 2mi(gHO.PIA D) THADBa0) (A, b, 0, 0, 0)"Y(A, b, 0, 0, 0)) - Z
= p(A', b, 0, 0, 0)—1 e27ria11(—a’+b’2(t—t’)/2+<b’,x’—x>)
X ((ppn @) (), O, %, 1, 0), (A, b)(B.)0))
Hence
(P @ (¥))((1, O, %, £, 0), (A, b)(B.)o)
— e21-riall(a'+b'2(t'7t)/2+<b’,xfx')) o(A', ', 0,0, 0)
X (\I,f ° (I)é—l(ﬂ, 0, x t, 0)1 (A! b)(@a)O))

In the case where (C,)o is trivid, if ¥y isgiven by (5.11) and g = (A',
b, X', t', &), we have

(Pen@(E))((1, 0, %, 1, 0), (A, b)(@.)o)
= @2miagy @+ X=X +b'(t-t')/2)) Wy o @é*l((l, 0, % t, 0), (A, b)(@)a)o)
Up to this moment, we have made no topological restriction on the class
of guantum states to be considered. Many choices are possible that enable

us to define wave functions associated to the corresponding quantum states.
Our choice in the present paper is the following: we consider only quantum



Wave Functions for Galilean Particles 1277

states corresponding to prewave functions W; such that f is continuous with
compact support.

Then, the Hermitian line bundle nature of some of the geometrical
objects involved enables us to define in a canonical way a Hermitian product
of quantum states and, as a consequence, of prewave functions. In fact, let
F and F’ be quantum states, o and o the associated sections of the
Hermitian line bundle, f = [ps](F) and f’ = [ps](F') (f and ' continuous
with compact support). Then the Hermitian structure associates to the pair
of quantum states the function

(or, o) (A, B)(B)o)
= F((A b, 0,0, a) KerC,) F'((A, b, 0, 0, a) KerC,)
=f((A b, 0,0, a) KerC) f'((A b, 0, 0, a) KerC.)

for al (A, b, 0,0, 8 € By X R, which leads us to define the Hermitian
product of prewave functions

(¥, W) = J o
Bo/(Ba)o

where o is an invariant volume element on 9730/(9730)0 and ff’ is the function
on By/(B)o given by

(A, b)(B.)o) = F(A b, 0, 0, a) KerCl) (A, b, 0, 0, a) KerCl)

foral (A, b, 0,0 8 € By X R.

It follows from equation (5.13) that the representation is unitary for this
Hermitian product.

This Hermitian product can be expressed in terms of the prewave func-
tions themselves as follows.

If (C,)o istrivid, we obviously have

(W, W = j T Vo (5.14)

B/ Bodo
where W¥;. is the function on By/(%B.), given by
T (A D)(B)o) = Vi(H, (A b)(B.)o) Tr (H, (A b)(@B.)o)

for al (A, b) € (B)o, H € R..

_Now, let usassumethat (C,)o isnot trivia and (p, L, Z) isatrivialization
of C,. Since the isotropy subgroup of By X R at z, is KerC,, we have a
canonical inmersion of B, X R/KerC, into L whose image is the orbit of
Zo, Which will be denoted by %. We identify 3By X R/KerC, to % by means
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of thisimmersion, but the topology and differentiable structure we consider
is that of homogeneous space. The canonical_projection of %, X R/KerC,
onto MBo/(%B)o becomes a map r of P onto By/(B.)o. The pseudotensorial
functionson %B, X R/KerC,, become complex-valued functionson %; in fact,
they correspond to the functions which are homogeneous of degree —1 under
multiplication by elements of C/((%.)o X R) C S*. These functions will be
called a-homogeneous of degree — 1. The a-homogeneous functions of degree
T are defined in a similar way.

Let ® be asesquilinear form on L which does not vanish on %. We define

T W (A B)(Bo)o € Bol(Ba)o

_ P(F(H, (A D)(Bo)o), Vi (H, (A b)(B.)o)
d(z, 2

where z is arbitrary in r~%((A, b)(%B.),) and H is arbitrary in R¢. Thus

<‘I’f, q’f’> = J ‘I’fCD‘I’frw (515)

Bo/(Ba)o

Finally, we now define the wave functions. To each prewave function
W; we associate a function W; defined on R* with values in the same space
as Vs by means of

e (x, t)=f~ O W((1,0,%,1,0), o
Bo/(Ba)o

Since we only consider the case where f is continuous with compact
support, the ®; we obtain is analytic.

The functions ®; are caled wave functions and their construction can
be interpreted as follows. If one thinks of the prewave function ¥; as giving
an “amplitude of probability” W((l, 0, x, t, 0), (A, b)(B,)o) for each event
(x, t) and each class of movements passing trough (x, t), (A, b)(Bo)o, Vi
associates to (x, t) the “sum” of the amplitudes of probability corresponding
to all the classes of movements passing trough (X, t).

_ If the correspondence f — W is injective, one obtains an action p,, of
9B on wave functions by means of

pw(9) (‘i’f) = \i’pps(g)(f) (5.16)

Injectivity is not clear but, as a consequence of the invariance of w,
we have

qups(Q)U) = p(A', br, 0, 0’ 0) e21-ria11(a’+(b’,xfx’+b'(t’7t)/2)) \iff ° g*l (517)
foralg= (A, b, X, t,a) e B, where g~* on the right-hand side stands
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for the diffeomorphism of R* corresponding to g and x (resp. t) is the function
on R*whose value at (ct, ¢?, c3, ¢¥) is (ct, ¢, c) (resp. ¢*). Notice that (5.17)
is valid under the hypothesis that (C,), is not trivia and (p, L, %) is a
trivialization of C,. If (C,)o is trivial, a formula similar to (5.17) is valid,
with the factor p(A’, b’, 0, 0, 0) deleted.

This entailsin particular that \pr Lan only depends on ¥; and g, so that
(5.16) defines p,,, which, as a consequence of (5.16), is an action.

The differentia of p,, dpw, is the map from the Lie algebra of & into
the Lie algebra of endomorphisms of the space of wave functions defined by

(dpu(X)(T)(H) = d% (Pw(Exp SX)(F))(H)
0

foral X e B, H e R4
If X = (dg~*(n), B, v, O, k), where m, B, v € R3 8, a« € R, a
straightforward computation proves that

(Apu(X)(¥)) = dp(dg~(#), B, 0, 0, 0)
o Wy + 2mia(k + (B, X))y + X - Uy (5.18)

where Xp# is the vector field on R* whose flow is composed of the diffeom-
orphisms associated by the action on R* to { Exp(—sX): s € R}. In the case
where (C,)qistrivial, the formulaobtained from the preceding one by deleting
the term in p is valid.

Each X e % isafunction on the state space of the particle corresponding
to «, and, in that sense, is a classical dynamical variable. The quantum
operator associated to X is

A

[
X = 5 doulX)

In the case of the canonical dynamical variables, one obtains

3
1ok d
= T P R
K= 50 (dp( ,0,0,0, 0) 2 lekjr er)

gk 2 i (dp(o €, O O O) + 2’1T|OL]_1Xk - t_>
5= L+ 9

P 2 oxk

E-_1 29

21 ot
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ﬁ‘lzotll

where ¢, are the components of an antisymmetric tensor such that ;53 = 1.
The following sections study the wave functions that correspond to
several kinds of particles.

6. SCHRODINGER EQUATION

Let us consider a particle whose movement space is the coadjoint orbit
of the form

o« = (dQEZ0 + pZt),  p#0
The isotropy subgroup at « in this case is
B, ={(U,0,0,ea):Uec UQ),eac R}

This group is connected and the elements of its fundamental group are
given in an obvious way by the elements of the fundamental group of SU(2).
The integrals of o on these curves are al zero so that the cohomology class
defined by o on %, is zero. It follows that « is R-quantizable [7] and the
homomorphism C;, of %, onto R whose differential is a can be computed
as follows. . .

For each (U, O, O, e, a) in &, one consider a curve y in %, beginning
at the identity element and ending at (U, 0, O, e, a). Then

Ci(U,0,0,e a = J o
Y
One can take -y as being the product (in the homotopy theory sense) of

a curve of the form v,(t) = (3(t), O, O, O, 0), where & is a curve from | to
U in SU(2), by the curve v,(t) = (U, 0, O, te, ta), and one obtains

Cl(U,0,0,e a = 1e+ pa

The homomorphism C, of %, onto S* whose differential is o is thus
given by

C.(U, 0,0, g a) = e?mi(erea)
Then (B,)o = {(U, 0): U e SU(2)} and (C,), istrivial, so that we need
no trivialization to give the wave functions in this case.

We shall give a volume element on %By/(%.,)o.
Let us consider the action of %, on R2 given by
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(U,b)Ox=qU)x+ b
The isotrropy subgroup at 0 is (B.)o, S0 that Bo/(%B.), can be identified with
R3 by means of the diffeomorphism
(U, B)(Bo)o € Bo/(Bo)o ~ b e R
Since det(q(U)) = 1 for al U € SU(2), the usual volume element on R®
is invariant.
With this identification the function P becomes

Pl) = (T +_t§//2/2)

As a consequence the wave functions are

Wi(x, t) = J g2m(niu)—rwy2) g3y
R3
where f is a compactly supported function on R3.

A straightforward computation proves that these functions are solutions
of the equation

i d = = 1 1

om ot ‘Iff(X, t) = T\Iff(x, t) (211_)2 2“,

Notice that . can take positive or negative values. For positive w the

preceding equation is the Schrodinger equation with a constant potential .

For apair (7, i) with negative ., one obtai ns an equation whose solutions

are the complex conjugate of the solutions of the Schrodinger equation

corresponding to (—, ).

The interior product of wave functions is given by (5.14).

AP(x, 1) (6.1)

7. PAULI EQUATIONS
Now we consider a particle whose movement space is the coadjoint
orbit of
o = (dQ)(SZ3 + 2% + pzhy

wheres # 0, w # 0.
In this case we have

- Geoedpecsnenc]

The group %, is connected so that the orbit is quantizable if and only



1282 Diaz Miranda

if the cohomology class defined by «, [o], isin HY(3,,, Z) [7]. This condition
holds if and only if [, a isintegral for al -y in a system of generators of the
fundamental group of %,. But the fundamental group of @&, is generated by
the curve given by
e21'rit 0
y(t) = ( 0 e—27rit)

for al t € [0, 1].

We have [, a = —4ms, so that the orbit is quantizable if and only if
s = Z/4+w for some integral Z. When this condition holds the integer Z is the
period of the Reeb vector field of the contact manifold and the homomorphism
C, is given by

Cofg) = &

where 8 is a curve beginning at the identity element and ending at g.

Letz= €1, a e R. in order to evauate

o fooe

one can consider the curve

3(t) = ((ezg'" %), 0, 0, te, ta)

and one obtains [5 o« = —4wrs + 1e + pa so that
C ((Z 9) 0,0,e a) = 7 dmsgPritetna)
(03 0 Z 1) 1 i) Ll
Then

(Bo)o X, R® = {((S 2) 0,c e a): ze St,ce R%ea e [R}

é ((Z _) 0.c e a) = Z—4ﬂTSe21-ri(Te+pLa)
o 0 7 1 Yy Uy Uy

o
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GB)o X R = {((é (_Z)) 0,0,0, a): zeShae R}

é&((z 9), 0,0,0, a) = z-4nsgerina
0 z

Now let us restrict ourselves to the case where —4ns = 1.
In this case (p, 7, C,) is atriviaization of C,, where z, = (1, 0, 0, 0)
and p is the representation of (%,)o X R in C* given by

U 0

U,b,0,0,a) = eiva
Pl ) (—%h(b)u u

) e GL(4, C)

This trivialization enables us to give the wave functions in terms of
homogeneous of degree —1 functions on the orbit of z, under p, identified
with (B.)o X R/IKerC,. We will identify these spaces with a well-known
manifold, which enables us to describe the construction in a more geometri-
cal way.

We define an action of By X R on S; X R3, where S is the usual unit
sphere in C2, by means of

(U, b, 0,0,a) O(zr) = (e€m+aUz q(U)r + b)

This is a transitive action and the isotropy subgroup at (‘(1, 0), 0) is
KerC,. As a consequence, the map
Bo X R

— - (U,b, 0,0, a)
KerC,

(2] s

is a diffeomorphism. If one identifies these manifolds by means of A, one
sees by direct computation that the bundle action of St on B, X R/KerC/,
becomes the usual product by elements of S? in the factor S°.

Now we consider an action of By X R in Py(C) X R3, where P,(C) is
the projective space corresponding to C?, i.e., the manifold of complex 1-
dimensional subspaces of C?, by means of

(U,b,0,0,a) O(4, r) = ([Uz, gU)r + b)

N (U, b, 0,0 a) KerC, e

Thisaction istransitive (since the preceding oneis) and the isotropy subgroup
a (['(1, 0)], 0) is (B.)o X R. As a consequence, the map
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By X R
(%a)o X R

m([(é)] o) e Py(C) X R?

is a diffeomorphism. If one identifies these manifolds by means of \’, the
principal fiber bundle

N (U,b, 0,0 8@ X R e - (U,b, 0,0, a)

BoXR( BoXR
KerC, \(Bo)o X R’

becomes (S X R3)((P(C) X R3, SY), where the bundle projection maps

each (z r) to ([4, r), and the bundle action is given, as we have said above,

by the usual product of elements of S® by modulus one complex numbers.
The 2-form on C? given by

_ (#dZ — Zd7") O (Z'dZ — Zd7)
o (227

where 7}, 72 are the canonical coordinates in C? and zz = |22 + |Z? is
projectable in P;(C). The local expression of the projection v in each of the
two canonical coordinate systems of P,(C) is

dzOdz
1+ 2%

The 5-form defined in P,(C) X R® by v 0 w, where o is the canonical
volume element of R, is a volume element left invariant by the action of
By X R.

With the identifications we have done, the function P that was originally
defined in By X R/(B,)o X R, becomes a function on Py(C) X R3. In a
strict sense this function is P » (\’) 1. But we have

{2

z —Z
JIZP+ 22 2P+ 2P
Z z

,1,0,0,0| (B x R

JIZE+ 122 IR+ 12

Then one sees that
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z _ —pr
(E)] )= ()
If fisafunction on S* X R homogeneous of degree —1 under multiplica-

tion by modulus one complex numbersin thefirst argument, the corresponding
prewave function is given by
)

wfoasen )

7
| [VEF P
2 + |7
X @ 2mi{(%, t),(—pr, 7+ uri2)y
via -7 1
JIZP+ 2P V12 2P 0
X p 22 Zl ] ry 01 01 0 0
JZP+ 22 2P+ 2P 0
Zl
—f |Zl|222+ E3R 1 | e 2mi@0 (a2
JIZ+ 2P
Zl
[ ] JIZP + 77
—3h(r) z

VI + 27

_ Iffiscontinuous with compact support, the corresponding wave function
V; is obtained by integration with respect to v O w. It is a function with
values in C*. Each of its components satisfies equation (6.1).

Now let us denote

v, = (‘Pf) (7.
Xt

and, accordingly
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ol
Xf
where ¢, x:, &, X1 take their values at C2.

Then we have

Zl

12 2

@f(x,t)zj il | VIZE 1217
P1(C)XR3 L
JIZP+ 2P

Z

% @2, (—prarur2)| v |Zl‘222+ |21 v A o (7.3)

Zl
1|2 2
o= -2 e [VE R
2 Z
2 + [
Zl

X e 2mi().urr ()| v |21|222+ 1Z[? DA o (7.4)
V2P + 2P

and a straightforward computation proves that

E¢+(c-p =0 (7.5)
(- pP)& + 2uxs =0

P1(C)XR3

where
-1 1
(2m)? 2
and

In the case of a positive ., these are the equations that appear in the
Pauli theory of the nonrelativistic approach to the Dirac equation. Since the
components of &; and ¥; are components of Wy, they are also solutions of
the Schrodinger equation (6.1).
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Now, let us determine the interior product in this case, according to
(5.15).
The form

D(Z, 2") =2*yZ

(4

is sesquilinear. It is preserved by the representation p and its value at 7z, is
1. Hence its value at any point of % is 1.
Then the interior product is given by

where

(W, Wy = J Ty A o (7.6)

P1(C)XR3
= J (ef @r + i(@f Xr — Xf o)V N\ o
P1(C)XR3

Now, let us consider the case where 4wrs = 1. A trivialization of C. is
(p', Zo, C%), where p’ is the representation

0'(U, b, 0,0, a) = ezﬂiwa(?h(fW %) e GL(4, C)

Also in this case we consider an action of By X R on S X R3:
(U,b,0,0,8) O(zr) = (&&2aU z q(U)r + b)
and an action of By X R on Py(C) X R
(U,b,0,0,a) O(2, r) = ((UZ, qU)r + b)

_ Theisotropy subgroup at (‘(1, 0), 0) (resp. (['(1, 0)], 0)) is KerC., (resp.
(Bo)o X R) and both actions are transitive. Then we have a canonical diffeo-
morphism from B, X R/KerC, (resp. By X RI(B,)o X R) onto S X R3
(resp. P,(C) X R®) defined as \ (resp. \') above, but now * stands for the
new action.

By means of these diffeomorphisms, the principal fiber bundle

(B X RIKerCL)(Bo X RI(B)o X R, SY

can be identified, also this time, with (S* X R%)(P,(C) X R3, S with the
same projection and bundle action as in the preceding case.
Now (\')"1is given by
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)

Z -7
JIZP + A7 V2P + |2
72 z

,1,0,0,0 (@) X R

JIZE+ 2R 2R+ 12

and one obtains also in this case

1))

If f is a complex-valued function on S* X R®, homogeneous of degree
—1 under multiplication in S by modulus one complex numbers, the corres-
ponding prewave function is given by

vfpaceal (3

Zl
122 + |22
__z
VIZ + |22

@ 2mi{()(—pr+ wri2)

, I

21 _22
|| VIZP+ 122 V2P + 2P
i pag

p ,,0,00

[cNeNaN ]

JIZE+ 127 VI 2R+ 2P

Z

=f v|21‘222+ 122 1 | ezt (pra @)

7P+ 27
Zl
o[ \[VEE T
sh(r) z
N

Then we define ¢; and x; by (7.1) and &; and ¥ by (7.2) and we obtain
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Z

&% ) =J il | VI 2
P1(C)xR3 L
JIZ? + [

Zl

X @2 (—pra+urZ2)| v/ |Zl|222+ |22 v A o (7.7)
JIZ[? + 122
A

G 1) = %J ¢ ,/|21"222+ |22 y

POxR® |\ £
JIZP+ 122
A
X g 2w (—urr+ ) )| v \21]222+ |22 v A (7.8)
2 + |22

which are solutions of the system of equations
E¢: + (0 - p)kr =0
(0 - P& + 2uxr =0
where (o - p) is the complex conjugate operator of o - p.
Also by a straightforward computation one sees that the components of
¢r and ¥; are solutions of the Schrodinger equation (6.1).
Notice that the complex conjugate of a solution of (7.5) whose compo-
nents satisfy (6.1) is solution of (7.9), but its components do not satisfy (6.1).

With regard to the Hermitian product, one also can use here the sesqui-
linear form @ and one obtains (7.6) also in this case.

(7.9)
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